Abstract
This paper proposes using both spatial and spectral regularizers/priors for hyperspectral image sharpening. Leveraging the recent plug-and-play framework, we plug two Gaussian-mixture-based denoisers into the iterations of an alternating direction method of multipliers (ADMM): a spatial regularizer learned from the observed multispectral image, and a spectral regularizer trained using the hyperspectral data. The proposed approach achieves very competitive results, improving the performance over using a single regularizer. Furthermore, the spectral regularizer can be used to classify the image pixels, opening the door to class-adapted models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345–2356 (2010)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)
Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-9467-7
Bioucas-Dias, J., Nascimento, J.: Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008)
Bioucas-Dias, J., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 5, 354–379 (2012)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)
Brifman, A., Romano, Y., Elad, M.: Turning a denoiser into a super-resolver using plug and play priors. In: IEEE ICIP (2016)
Chan, S., Wang, X., Elgendy, O.: Plug-and-play ADMM for image restoration: fixed point convergence and applications. IEEE Trans. Comput. Imaging PP(99), 1 (2016)
Green, A., Berman, M., Switzer, P., Craig, M.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988)
Jolliffe, I.: Principal Component Analysis. Springer, New York (1986). https://doi.org/10.1007/b98835
Landgrebe, D.: Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken (2003)
Loncan, L., Almeida, L., Bioucas-Dias, J., Briottet, X., Chanussot, J., Dobigeon, N., Fabre, S., Liao, W., Licciardi, G., Simões, M., Tourneret, J.-Y., Veganzones, M., Vivone, G., Wei, Q., Yokoya, N.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3, 27–46 (2015)
Nascimento, J., Bioucas-Dias, J.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005)
Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (RED) arXiv:1611.02862 (2016)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60, 259–268 (1992)
Simões, M., Bioucas-Dias, J., Almeida, L., Chanussot, J.: A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 55, 3373–3388 (2015)
Sreehari, S., Venkatakrishnan, S., Wohlberg, B., Buzzard, G., Drummy, L., Simmons, J., Bouman, C.: Plug-and-play priors for bright field electron tomography and sparse interpolation. IEEE Trans. Comput. Imaging 2(4), 408–423 (2016)
Teodoro, A., Almeida, M., Figueiredo, M.: Single-frame image denoising and inpainting using Gaussian mixtures. In: ICPRAM, pp. 283–288 (2015)
Teodoro, A., Bioucas-Dias, J., Figueiredo, M.: Image restoration and reconstruction using variable splitting and class-adapted image priors. In: IEEE-ICIP (2016)
Teodoro, A., Bioucas-Dias, J., Figueiredo, M.: Image restoration with locally selected class-adapted models. In: IEEE-MLSP (2016)
Teodoro, A., Bioucas-Dias, J., Figueiredo, M.: Sharpening hyperspectral images using plug-and-play priors. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds.) LVA/ICA 2017. LNCS, vol. 10169, pp. 392–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53547-0_37
Teodoro, A., Bioucas-Dias, J., Figueiredo, M.: Hyperspectral sharpening using scene-adapted Gaussian mixture priors. Preprint arXiv:1702.02445 (2017)
Venkatakrishnan, S., Bouman, C., Chu, E., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: IEEE GlobalSIP, pp. 945–948 (2013)
Wei, Q., Bioucas-Dias, J., Dobigeon, N., Tourneret, J.-Y.: Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens. 53, 3658–3668 (2015)
Yokoya, N., Grohnfeldt, C., Chanussot, J.: Hyperspectral and multispectral data fusion: a comparative review. IEEE Geosci. Remote Sens. Mag. 5, 29–56 (2017)
Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21, 2481–2499 (2012)
Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: IEEE-CVPR, pp. 479–486 (2011)
Acknowledgments
This work was partially supported by Fundação para a Ciência e Tecnologia (FCT), grants BD/102715/2014, UID/EEA/5008/2013, and ERANETMED/0001/2014. The authors would like to thank Prof. N. Yokoya for providing the datasets [26].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Teodoro, A.M., Bioucas-Dias, J.M., Figueiredo, M.A.T. (2018). Sharpening Hyperspectral Images Using Spatial and Spectral Priors in a Plug-and-Play Algorithm. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-78199-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78198-3
Online ISBN: 978-3-319-78199-0
eBook Packages: Computer ScienceComputer Science (R0)