Skip to main content

Euler-Lagrange Network Dynamics

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

In this paper, we investigate network evolution dynamics using the Euler-Lagrange equation. We use the Euler-Lagrange equation to develop a variational principle based on the von Neumann entropy for time-varying network structure. Commencing from recent work to approximate the von Neumann entropy using simple degree statistics, the changes in entropy between different time epochs are determined by correlations in the degree difference in the edge connections. Our Euler-Lagrange equation minimises the change in entropy and allows to develop a dynamic model to predict the changes of node degree with time. We first explore the effect of network dynamics on three widely studied complex network models, namely (a) Erdős-Rényi random graphs, (b) Watts-Strogatz small-world networks, and (c) Barabási-Albert scale-free networks. Our model effectively captures the structural transitions in the dynamic network models. We also apply our model to a time sequence of networks representing the evolution of stock prices on the New York Stock Exchange (NYSE). Here we use the model to differentiate between periods of stable and unstable stock price trading and to detect periods of anomalous network evolution. Our experiments show that the presented model not only provides an accurate simulation of the degree statistics in time-varying networks but also captures the topological variations taking place when the structure of a network changes violently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolstenholme, R.J., Walden, A.T.: An efficient approach to graphical modeling of time series. IEEE Trans. Signal Process. 63, 3266–3276 (2015). ISSN 1053-587X

    Article  MathSciNet  Google Scholar 

  2. Ye, C., Torsello, A., Wilson, R.C., Hancock, E.R.: Thermodynamics of time evolving networks. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 315–324. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_31

    Google Scholar 

  3. Ernesto, E., Naomichi, H.: Communicability in complex networks. Phys. Rev. E 77, 036111 (2008)

    Article  MathSciNet  Google Scholar 

  4. Han, L., Wilson, R.C., Hancock, E.R.: Generative graph prototypes from information theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2013–2027 (2015)

    Article  Google Scholar 

  5. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Nat. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Loukas, A., Simonetto, A., Leus, G.: Distributed autoregressive moving average graph filters. IEEE Signal Process. Lett. 22(11), 1931–1935 (2015)

    Article  Google Scholar 

  7. Ye, C., Wilson, R.C., Hancock, E.R.: Correlation network evolution using mean reversion autoregression. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 163–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_15

    Chapter  Google Scholar 

  8. Silva, F.N., Comin, C.H., Peron, T.K.D., Rodrigues, F.A., Ye, C., Wilson, R.C., Hancock, E., Costa, L.F.: Modular dynamics of financial market networks, pp. 1–13 (2015)

    Google Scholar 

  9. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale free random networks. Phys. A 272, 173–187 (1999)

    Article  Google Scholar 

  11. Wang, J., Wilson, R.C., Hancock, E.R.: Minimising entropy changes in dynamic network evolution. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 255–265. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_23

    Chapter  Google Scholar 

  12. Watts, D., Strogatz, S.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  13. Wang, J., Wilson, R., Hancock, E.R.: Network entropy analysis using the Maxwell-Boltzmann partition function. In: The 23rd International Conference on Pattern Recognition (ICPR), pp. 1–6 (2016)

    Google Scholar 

  14. Wang, J., Wilson, R.C., Hancock, E.R.: Spin statistics, partition functions and network entropy. J. Complex Netw. 5, 1–25 (2017). https://doi.org/10.1093/comnet/cnx017

    MathSciNet  Google Scholar 

  15. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from von Neumann entropy. Pattern Recognit. Lett. 33, 1958–1967 (2012)

    Article  Google Scholar 

  16. Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent Technol. Syst. 1, 58–67 (2008)

    Article  Google Scholar 

  17. Yahoo! Finance. http://finance.yahoo.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Wilson, R.C., Hancock, E.R. (2018). Euler-Lagrange Network Dynamics. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics