Skip to main content

An Isotropic Minimal Path Based Framework for Segmentation and Quantification of Vascular Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

Abstract

Minimal path approaches for image analysis aim to extract curves minimizing an energy functional. The energy of a path corresponds to its weighted curve length according to a relevant metric function. In this study, we design a binary isotropic metric model with the use of a Hessian-based vascular enhancement filter in order to extract geometrical features from vascular networks. We introduce a constrained keypoint search method able to extract subpixel vessel centrelines, diameters and bifurcations. Experiments on retinal images demonstrated that the proposed framework achieves similar even better segmentation performances as compared with methods using more sophisticated metric designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and computation of medial axes-a state-of-the-art report. In: Möller, T., Hamann, B., Russell, R.D. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. MATHVISUAL, pp. 109–125. Springer, Heidelberg (2009). https://doi.org/10.1007/b106657_6

    Chapter  Google Scholar 

  2. Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.R.: Data-driven sub-riemannian geodesics in SE(2). In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 613–625. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_49

    Google Scholar 

  3. Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vis. 33(2), 209–221 (2009)

    Article  MathSciNet  Google Scholar 

  4. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210 (2011)

    Article  Google Scholar 

  5. Bullitt, E., Gerig, G., Pizer, S.M., Lin, W., Aylward, S.R.: Measuring tortuosity of the intracerebral vasculature from mra images. IEEE Trans. Med. Imaging 22(9), 1163–1171 (2003)

    Article  Google Scholar 

  6. Chen, D., Cohen, L.D.: Piecewise geodesics for vessel centerline extraction and boundary delineation with application to retina segmentation. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 270–281. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_22

    Google Scholar 

  7. Chen, D., Mirebeau, J.M., Cohen, L.D.: Vessel tree extraction using radius-lifted keypoints searching scheme and anisotropic fast marching method. J. Algorithms Comput. Technol. 10(4), 224–234 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cohen, E., Deffieux, T., Demené, C., Cohen, L.D., Tanter, M.: 3D vessel extraction in the rat brain from ultrasensitive doppler images. In: Gefen, A., Weihs, D. (eds.) Computer Methods in Biomechanics and Biomedical Engineering. LNB, pp. 81–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59764-5_10

    Chapter  Google Scholar 

  9. Cohen, E., Deffieux, T., Tiran, E., Demene, C., Cohen, L., Tanter, M.: Ultrasensitive doppler based neuronavigation system for preclinical brain imaging applications. In: 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2016)

    Google Scholar 

  10. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vision 24(1), 57–78 (1997)

    Article  Google Scholar 

  11. Crandall, M.G., Lions, P.L.: Viscosity solutions of hamilton-jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demené, C.: Cartographie vasculaire et fonctionnelle du cerveau par échographie Doppler ultrarapide chez le petit animal et le nouveau-né. Ph.D. thesis, Paris 7 (2015)

    Google Scholar 

  13. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5(4), 281–299 (2001)

    Article  Google Scholar 

  14. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  15. Hart, W.E., Goldbaum, M., Côté, B., Kube, P., Nelson, M.R.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53(2), 239–252 (1999)

    Article  Google Scholar 

  16. Jerman, T., Pernus, F., Likar, B., Spiclin, Z.: Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 35(9), 2107 (2016)

    Article  Google Scholar 

  17. Kaul, V., Yezzi, A., Tsai, Y.: Detecting curves with unknown endpoints and arbitrary topology using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1952–1965 (2012)

    Article  Google Scholar 

  18. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  19. Li, H., Yezzi, A., Cohen, L.: 3D multi-branch tubular surface and centerline extraction with 4D iterative key points. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1042–1050. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_126

    Chapter  Google Scholar 

  20. Mirebeau, J.M.: Anisotropic fast-marching on cartesian grids using lattice basis reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D.: Geodesic methods in computer vision and graphics. Found. Trends® Comput. Graph. Vis. 5(3–4), 197–397 (2010)

    MATH  Google Scholar 

  22. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging 25(12), 1531–1546 (2006)

    Article  Google Scholar 

  26. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  27. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to particularly thank Dr. Da Chen for his precious help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, E., Cohen, L.D., Deffieux, T., Tanter, M. (2018). An Isotropic Minimal Path Based Framework for Segmentation and Quantification of Vascular Networks. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics