Skip to main content

Dominant Set Biclustering

  • Conference paper
  • First Online:
  • 978 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

Abstract

Biclustering, which can be defined as the simultaneous clustering of rows and columns in a data matrix, has received increasing attention in recent years, being applied in many scientific scenarios (e.g. bioinformatics, text analysis, computer vision). This paper proposes a novel biclustering approach, which extends the dominant-set clustering algorithm to the biclustering case. In particular, we propose a new way of representing the problem, encoded as a graph, which allows to exploit dominant set to analyse both rows and columns simultaneously. The proposed approach has been tested by using a well known synthetic microarray benchmark, with encouraging results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The idea is to setup a symmetric, non-cooperative game, called clustering game, between two players. Data points V are the strategies available to the players and the similarity matrix A encodes their payoff matrix.

  2. 2.

    We performed a t-test for each noise level (on the result of the 30 matrices), we set the significance level to 5%.

  3. 3.

    https://cs.adelaide.edu.au/~hwong/doku.php?id=data.

References

  1. Ahmad, W., Khokhar, A.: cHawk: an efficient biclustering algorithm based on bipartite graph crossing minimization. In: VLDB Workshop on Data Mining in Bioinformatics (2007)

    Google Scholar 

  2. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)

    Article  Google Scholar 

  3. Bulò, S.R., Bomze, I.M.: Infection and immunization: a new class of evolutionary game dynamics. Games Econ. Behav. 71(1), 193–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bulò, S.R., Pelillo, M.: Dominant-set clustering: a review. Eur. J. Oper. Res. 262(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Y., Church, G.: Biclustering of expression data. In: Proceeding of Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB00), pp. 93–103 (2000)

    Google Scholar 

  6. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  7. Denitto, M., Farinelli, A., Figueiredo, M.A., Bicego, M.: A biclustering approach based on factor graphs and the max-sum algorithm. Pattern Recogn. 62, 114–124 (2017)

    Article  Google Scholar 

  8. Denitto, M., Magri, L., Farinelli, A., Fusiello, A., Bicego, M.: Multiple structure recovery via probabilistic biclustering. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 274–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_25

    Chapter  Google Scholar 

  9. Ding, C., Zhang, Y., Li, T., Holbrook, S.R.: Biclustering protein complex interactions with a biclique finding algorithm. In: 2006 Sixth International Conference on Data Mining, ICDM 2006, pp. 178–187. IEEE (2006)

    Google Scholar 

  10. Farinelli, A., Denitto, M., Bicego, M.: Biclustering of expression microarray data using affinity propagation. In: Loog, M., Wessels, L., Reinders, M., Ridder, D. (eds.) Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, vol. 7036, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24855-9_2

    Chapter  Google Scholar 

  11. Fitzgibbon, A.W., Zisserman, A.: Multibody structure and motion: 3-D reconstruction of independently moving objects. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 891–906. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_58

    Chapter  Google Scholar 

  12. Flores, J.L., Inza, I., Larraaga, P., Calvo, B.: A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Programs Biomed. 112(3), 367–397 (2013). http://www.sciencedirect.com/science/article/pii/S0169260713002605

    Article  Google Scholar 

  13. Gao, B., Liu, T.Y., Zheng, X., Cheng, Q.S., Ma, W.Y.: Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 41–50. ACM (2005)

    Google Scholar 

  14. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. Nat. Acad. Sci. USA 97(22), 12079–12084 (2000)

    Article  Google Scholar 

  15. Häne, C., Zach, C., Zeisl, B., Pollefeys, M.: A patch prior for dense 3D reconstruction in man-made environments. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 563–570. IEEE (2012)

    Google Scholar 

  16. Khan, S., Chen, L., Zhe, X., Yan, H.: Feature selection based on co-clustering for effective facial expression recognition. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC), pp. 48–53. IEEE (2016)

    Google Scholar 

  17. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinf. 1, 24–44 (2004)

    Article  Google Scholar 

  18. Melnykov, V.: Model-based biclustering of clickstream data. Comput. Stat. Data Anal. 93, 31–45 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: Survey of multiobjective evolutionary algorithms for data mining: part ii. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)

    Article  Google Scholar 

  20. Oghabian, A., Kilpinen, S., Hautaniemi, S., Czeizler, E.: Biclustering methods: biological relevance and application in gene expression analysis. PloS One 9(3), e90801 (2014)

    Article  Google Scholar 

  21. Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering, p. 362. IEEE (2003)

    Google Scholar 

  22. Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inf. 57, 163–180 (2015)

    Article  Google Scholar 

  23. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: Comparison of biclustering methods: a systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  24. Smith, J.M.: Evolution and the theory of games. In: Smith, J.M. (ed.) Did Darwin Get It Right?, pp. 202–215. Springer, Boston (1988). https://doi.org/10.1007/978-1-4684-7862-4_22

    Chapter  Google Scholar 

  25. Soltanolkotabi, M., Elhamifar, E., Candès, E.J.: Robust subspace clustering. Ann. Stat. 42(2), 669–699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Process. Syst. 50(3), 267–280 (2008)

    Article  Google Scholar 

  27. Toldo, R., Fusiello, A.: Image-consistent patches from unstructured points with J-linkage. Image Vis. Comput. 31(10), 756–770 (2013)

    Article  Google Scholar 

  28. Tu, K., Ouyang, X., Han, D., Honavar, V.: Exemplar-based robust coherent biclustering. In: SDM, pp. 884–895. SIAM (2011)

    Google Scholar 

  29. Zemene, E., Pelillo, M.: Interactive image segmentation using constrained dominant sets. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 278–294. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Denitto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denitto, M., Bicego, M., Farinelli, A., Pelillo, M. (2018). Dominant Set Biclustering. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics