Abstract
Biclustering, which can be defined as the simultaneous clustering of rows and columns in a data matrix, has received increasing attention in recent years, being applied in many scientific scenarios (e.g. bioinformatics, text analysis, computer vision). This paper proposes a novel biclustering approach, which extends the dominant-set clustering algorithm to the biclustering case. In particular, we propose a new way of representing the problem, encoded as a graph, which allows to exploit dominant set to analyse both rows and columns simultaneously. The proposed approach has been tested by using a well known synthetic microarray benchmark, with encouraging results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The idea is to setup a symmetric, non-cooperative game, called clustering game, between two players. Data points V are the strategies available to the players and the similarity matrix A encodes their payoff matrix.
- 2.
We performed a t-test for each noise level (on the result of the 30 matrices), we set the significance level to 5%.
- 3.
References
Ahmad, W., Khokhar, A.: cHawk: an efficient biclustering algorithm based on bipartite graph crossing minimization. In: VLDB Workshop on Data Mining in Bioinformatics (2007)
Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)
Bulò, S.R., Bomze, I.M.: Infection and immunization: a new class of evolutionary game dynamics. Games Econ. Behav. 71(1), 193–211 (2011)
Bulò, S.R., Pelillo, M.: Dominant-set clustering: a review. Eur. J. Oper. Res. 262(1), 1–13 (2017)
Cheng, Y., Church, G.: Biclustering of expression data. In: Proceeding of Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB00), pp. 93–103 (2000)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)
Denitto, M., Farinelli, A., Figueiredo, M.A., Bicego, M.: A biclustering approach based on factor graphs and the max-sum algorithm. Pattern Recogn. 62, 114–124 (2017)
Denitto, M., Magri, L., Farinelli, A., Fusiello, A., Bicego, M.: Multiple structure recovery via probabilistic biclustering. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 274–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_25
Ding, C., Zhang, Y., Li, T., Holbrook, S.R.: Biclustering protein complex interactions with a biclique finding algorithm. In: 2006 Sixth International Conference on Data Mining, ICDM 2006, pp. 178–187. IEEE (2006)
Farinelli, A., Denitto, M., Bicego, M.: Biclustering of expression microarray data using affinity propagation. In: Loog, M., Wessels, L., Reinders, M., Ridder, D. (eds.) Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, vol. 7036, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24855-9_2
Fitzgibbon, A.W., Zisserman, A.: Multibody structure and motion: 3-D reconstruction of independently moving objects. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 891–906. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_58
Flores, J.L., Inza, I., Larraaga, P., Calvo, B.: A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Programs Biomed. 112(3), 367–397 (2013). http://www.sciencedirect.com/science/article/pii/S0169260713002605
Gao, B., Liu, T.Y., Zheng, X., Cheng, Q.S., Ma, W.Y.: Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 41–50. ACM (2005)
Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. Nat. Acad. Sci. USA 97(22), 12079–12084 (2000)
Häne, C., Zach, C., Zeisl, B., Pollefeys, M.: A patch prior for dense 3D reconstruction in man-made environments. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 563–570. IEEE (2012)
Khan, S., Chen, L., Zhe, X., Yan, H.: Feature selection based on co-clustering for effective facial expression recognition. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC), pp. 48–53. IEEE (2016)
Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinf. 1, 24–44 (2004)
Melnykov, V.: Model-based biclustering of clickstream data. Comput. Stat. Data Anal. 93, 31–45 (2016)
Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: Survey of multiobjective evolutionary algorithms for data mining: part ii. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)
Oghabian, A., Kilpinen, S., Hautaniemi, S., Czeizler, E.: Biclustering methods: biological relevance and application in gene expression analysis. PloS One 9(3), e90801 (2014)
Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering, p. 362. IEEE (2003)
Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inf. 57, 163–180 (2015)
Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: Comparison of biclustering methods: a systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)
Smith, J.M.: Evolution and the theory of games. In: Smith, J.M. (ed.) Did Darwin Get It Right?, pp. 202–215. Springer, Boston (1988). https://doi.org/10.1007/978-1-4684-7862-4_22
Soltanolkotabi, M., Elhamifar, E., Candès, E.J.: Robust subspace clustering. Ann. Stat. 42(2), 669–699 (2014)
Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Process. Syst. 50(3), 267–280 (2008)
Toldo, R., Fusiello, A.: Image-consistent patches from unstructured points with J-linkage. Image Vis. Comput. 31(10), 756–770 (2013)
Tu, K., Ouyang, X., Han, D., Honavar, V.: Exemplar-based robust coherent biclustering. In: SDM, pp. 884–895. SIAM (2011)
Zemene, E., Pelillo, M.: Interactive image segmentation using constrained dominant sets. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 278–294. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Denitto, M., Bicego, M., Farinelli, A., Pelillo, M. (2018). Dominant Set Biclustering. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-78199-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78198-3
Online ISBN: 978-3-319-78199-0
eBook Packages: Computer ScienceComputer Science (R0)