Skip to main content

Variational Large Displacement Optical Flow Without Feature Matches

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

  • 1129 Accesses

Abstract

The optical flow within a scene can be an arbitrarily complex composition of motion patterns that typically differ regarding their scale. Hence, using a single algorithm with a single set of parameters is often not sufficient to capture the variety of these motion patterns. In particular, the estimation of large displacements of small objects poses a problem. In order to cope with this problem, many recent methods estimate the optical flow by a fusion of flow candidates obtained either from different algorithms or from the same algorithm using different parameters. This, however, typically results in a pipeline of methods for estimating and fusing the candidate flows, each requiring an individual model with a dedicated solution strategy. In this paper, we investigate what results can be achieved with a pure variational approach based on a standard coarse-to-fine optimization. To this end, we propose a novel variational method for the simultaneous estimation and fusion of flow candidates. By jointly using multiple smoothness weights within a single energy functional, we are able to capture different motion patterns and hence to estimate large displacements even without additional feature matches. In the same functional, an intrinsic model-based fusion allows to integrate all these candidates into a single flow field, combining sufficiently smooth overall motion with locally large displacements. Experiments on large displacement sequences and the Sintel benchmark demonstrate the feasibility of our approach and show improved results compared to a single-smoothness baseline method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, L., Ortega, J.: A multi-color sor method for parallel computation. In: Proceedings of International Conference on Parallel Processing, pp. 53–56 (1982)

    Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2010)

    Article  Google Scholar 

  3. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized PatchMatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_3

    Chapter  Google Scholar 

  4. Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 292–302 (1991)

    Google Scholar 

  5. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  6. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  8. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  9. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  10. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of IEEE International Conference on Image Processing, pp. 168–172 (1994)

    Google Scholar 

  11. Demetz, O., Stoll, M., Volz, S., Weickert, J., Bruhn, A.: Learning brightness transfer functions for the joint recovery of illumination changes and optical flow. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 455–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_30

    Google Scholar 

  12. Drayer, B., Brox, T.: Combinatorial regularization of descriptor matching for optical flow estimation. In: Proceedings of British Machine Vision Conference, pp. 42.1–42.12 (2015)

    Google Scholar 

  13. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)

    Google Scholar 

  14. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  15. Lempitsky, V., Roth, S., Rother, C.: FusionFlow: discrete-continuous optimization for optical flow estimation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  16. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)

    Article  Google Scholar 

  17. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67(2), 141–158 (2006)

    Article  Google Scholar 

  18. Sevilla-Lara, L., Sun, D., Learned-Miller, E.G., Black, M.J.: Optical flow estimation with channel constancy. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 423–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_28

    Google Scholar 

  19. Sigal, L., Balan, A.O., Black, M.J.: HumanEva: synchronized video and motion capture dataset for evaluation of articulated human motion. Int. J. Comput. Vis. 87(1–2), 4–27 (2010)

    Article  Google Scholar 

  20. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 310–315 (1991)

    Google Scholar 

  21. Stoll, M., Volz, S., Bruhn, A.: Adaptive integration of feature matches into variational optical flow methods. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 1–14. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_1

    Chapter  Google Scholar 

  22. Stoll, M., Volz, S., Maurer, D., Bruhn, A.: A time-efficient optimisation framework for parameters of optical flow methods. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 41–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_4

    Chapter  Google Scholar 

  23. Tu, Z., Poppe, R., Veltkamp, R.C.: Weighted local intensity fusion method for variational optical flow estimation. Pattern Recogn. 50, 223–232 (2016)

    Article  Google Scholar 

  24. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: Proceedings of International Conference on Computer Vision, pp. 1116–1123 (2011)

    Google Scholar 

  25. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: Proceedings of International Conference on Computer Vision, pp. 1385–1392 (2013)

    Google Scholar 

  26. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012)

    Article  Google Scholar 

  27. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., Seidel, H.-P.: Complementary optic flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207–220. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03641-5_16

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (DFG) for financial support within project B04 of SFB/Transregio 161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stoll, M., Maurer, D., Bruhn, A. (2018). Variational Large Displacement Optical Flow Without Feature Matches. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics