
HAL Id: hal-01900708
https://inria.hal.science/hal-01900708

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Masking the GLP Lattice-Based Signature Scheme at
Any Order

Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, Mehdi Tibouchi

To cite this version:
Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, et al.. Masking
the GLP Lattice-Based Signature Scheme at Any Order. Eurocrypt 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Apr 2018, Tel Aviv, Israel.
pp.354-384, �10.1007/978-3-319-78375-8_12�. �hal-01900708�

https://inria.hal.science/hal-01900708
https://hal.archives-ouvertes.fr

Masking the GLP Lattice-Based

Signature Scheme at Any Order

Gilles Barthe
1
, Sonia Belaı̈d

2
, �omas Espitau

3
, Pierre-Alain Fouque

4
, Benjamin Grégoire

5
,

Mélissa Rossi
6,7

, and Mehdi Tibouchi
8

1
IMDEA So�ware Institute

gilles.barthe@imdea.org
2

CryptoExperts

sonia.belaid@cryptoexperts.com
3

Sorbonne Université, Laboratoire d’informatique de Paris VI

thomas.espitau@lip6.fr
4

Université de Rennes

pierre-alain.fouque@univ-rennes1.fr
5

Inria Sophia Antipolis

benjamin.gregoire@sophia.inria.fr
6

�ales

7
École Normale Supérieure de Paris, Département d’informatique,

CNRS, PSL Research University, INRIA

melissa.rossi@ens.fr
8

NTT Secure Platform Laboratories

tibouchi.mehdi@lab.ntt.co.jp

Abstract. Recently, numerous physical a�acks have been demonstrated against la�ice-

based schemes, o�en exploiting their unique properties such as the reliance on Gaussian

distributions, rejection sampling and FFT-based polynomial multiplication. As the call for

concrete implementations and deployment of postquantum cryptography becomes more

pressing, protecting against those a�acks is an important problem. However, few counter-

measures have been proposed so far. In particular, masking has been applied to the decryp-

tion procedure of some la�ice-based encryption schemes, but the much more di�cult case

of signatures (which are highly non-linear and typically involve randomness) has not been

considered until now.

In this paper, we describe the �rst masked implementation of a la�ice-based signature

scheme. Since masking Gaussian sampling and other procedures involving contrived prob-

ability distribution would be prohibitively ine�cient, we focus on the GLP scheme of

Güneysu, Lyubashevsky and Pöppelmann (CHES 2012). We show how to provably mask it

in the Ishai–Sahai–Wagner model (CRYPTO 2003) at any order in a relatively e�cient man-

ner, using extensions of the techniques of Coron et al. for converting between arithmetic

and Boolean masking. Our proof relies on a mild generalization of probing security that

supports the notion of public outputs. We also provide a proof-of-concept implementation

to assess the e�ciency of the proposed countermeasure.

Keywords: Side-channel, Masking, GLP la�ice-based signature

1 Introduction

As the demands for practical implementations of postquantum cryptographic schemes get more

pressing ahead of the NIST postquantum competition and in view of the recommendations of

various agencies, understanding the security of those schemes against physical a�acks is of

paramount importance. La�ice-based cryptography, in particular, is an a�ractive option in the

postquantum se�ing, as it allows to design postquantum implementations of a wide range of

primitives with strong security guarantees and a level of e�ciency comparable to currently de-

ployed RSA and elliptic curve-based schemes. However, it poses new sets of challenges as far as

side-channels and other physical a�acks are concerned. In particular, the reliance on Gaussian

distributions, rejection sampling or the number-theoretic transform for polynomial multiplica-

tion have been shown to open the door to new types of physical a�acks for which it is not

always easy to propose e�cient countermeasures.

�e issue has in particular been laid bare in a number of recent works for the case of la�ice-

based signature schemes. La�ice-based signature in the random oracle model can be roughly di-

vided into two families: on the one hand, constructions following Lyubashevsky’s “Fiat–Shamir

with aborts” paradigm [25], and on the other hand, hash-and-sign signatures relying on la�ice

trapdoors, as introduced by Gentry, Peikert and Vaikuntanathan [21]. A�empts have been made

to implement schemes from both families, but Fiat–Shamir signatures are more common (al-

though their postquantum security is admi�edly not as well grounded). �e underlying frame-

work is called Fiat–Shamir with aborts because, unlike RSA and discrete logarithm-based con-

structions, la�ice-based constructions involve sampling from sets that do not admit a nice al-

gebraic structure. A naı̈ve sampling algorithm would leak partial key information, in much the

same way as it did in early heuristic schemes like GGH and NTRUSign; this is avoided by forc-

ing the output signature to be independent of the secret key using rejection sampling. Many

instantiations of the framework have been proposed [25,26,23,17,29], some of them quite e�-

cient: for example, the BLISS signature scheme [17] boasts performance and key and signature

sizes roughly comparable to RSA and ECDSA signatures.

However, the picture becomes less rosy once physical a�acks are taken into account. For

instance, Groot Bruinderink et al. [8] demonstrated a cache a�ack targe�ing the Gaussian sam-

pling of the randomness used in BLISS signatures, which recovers the entire secret key from

the side-channel leakage of a few thousand signature generations. Fault a�acks have also been

demonstrated on all kinds of la�ice-based signatures [19,7]. In particular, Espitau et al. recover

the full BLISS secret key using a single fault on the generation of the randomness (and present a

similarly e�cient a�ack on GPV-style signatures). More recently, ACM CCS 2017 has featured

several papers [20,28] exposing further side-channel a�acks on BLISS, its variant BLISS–B, and

their implementation in the strongSwan VPN so�ware. �ey are based on a range of di�erent

side channels (cache a�acks, simple and correlation electromagnetic analysis, branch tracing,

etc.), and some of them target new parts of the signature generation algorithm, such as the

rejection sampling.

In order to protect against a�ack such as these, one would like to apply powerful counter-

measures like masking. However, doing so e�ciently on a scheme like BLISS seems hard, as

discussed in [20]. Indeed, the sampling of the Gaussian randomness in BLISS signature gener-

ation involves either very large lookup tables, which are expensive to mask e�ciently, or iter-

ative approaches that are hard to even implement in constant time–let alone mask. Similarly,

the rejection sampling step involves transcendental functions of the secret data that have to be

computed to high precision; doing so in masked form seems daunting.

2

However, there exist other la�ice-based signatures that appear to support side-channel coun-

termeasures like masking in a more natural way, because they entirely avoid Gaussians and

other contrived distributions. Both the sampling of the randomness and the rejection sampling

of signatures target uniform distributions in contiguous intervals. Examples of such schemes

include the GLP scheme of Güneysu, Lyubashevsky and Pöppelmann [23], which can be seen as

the ancestor of BLISS, and later variants like the Dilithium scheme of Ducas et al. [18] (but not

Dilithium-G).

In this paper, we show how to e�ciently mask the GLP scheme at any masking order, so

as to achieve security against power analysis and related a�acks (both simple power analysis

and higher-order a�acks like di�erential/correlation power analysis). �is is to the best of our

knowledge the �rst time a masking countermeasure has been applied to protect la�ice-based

signatures.

Related work. Masking is a well-known technique introduced by Chari, Rao and Rohatgi at

CHES 2002 [9] and essentially consists in spli�ing a secret value into d + 1 ones (d is thus the

masking order), using a secret sharing scheme. �is will force the adversary to read many in-

ternal variables if he wants to recover the secret value, and he will gain no information if he

observes fewer than d values. �e advantage of this spli�ing is that linear operations cost noth-

ing, but the downside is that non-linear operations (such as the AES S-box) can become quite

expensive. Later, Ishai, Sahai and Wagner [24] developed a technique to prove the security of

masking schemes in the threshold probing model (ISW), in which the adversary can read o� at

most d wires in a circuit. Recently, Duc, Dziembowski and Faust [16] proved the equivalence

between this threshold model and the more realistic noisy model, in which the adversary ac-

quires leakage on all variables, but that leakage is perturbed with some noise distribution, as

is the case in practical side-channel a�acks. Since the ISW model is much more convenient for

designing and proving masking countermeasures, it is thus preferred, as the equivalence results

of Duc et al. ultimately ensure that a secure implementation in the ISW model at a su�ciently

high masking order is going to be secure against practical side-channel a�acks up to a given

signal-to-noise ratio.

Masking has been applied to la�ice-based encryption schemes before [31,30]. However, in

these schemes, only the decryption procedure needs to be protected, and it usually boils down

to computing a scalar product between the secret key and the ciphertext (which is a linear

operation in the secret data) followed by a comparison (which is non-linear, but not very di�cult

to mask). Oder et al. [27] point out a number of issues with those masked decryption algorithms,

and describe another one, for a CCA2-secure version of Ring-LWE public-key encryption.

Our results. Masking la�ice-based signatures, even in the comparatively simple case of GLP,

turns out to be surprisingly di�cult—possibly more so than any of the previous masking coun-

termeasures considered so far in the literature. �e probabilistic nature of signature generation,

as well as its reliance on rejection sampling, present challenges (both in terms of design and of

proof techniques) that had not occurred in earlier schemes, most of them deterministic. In addi-

tion, for performance reasons, we are led to require a stronger security property of the original,

unprotected signature scheme itself, which we have to establish separately. More precisely, the

following issues arise.

Conversion between Boolean and mod-p arithmetic masking. Most steps of the signing algorithm

involve linear operations on polynomials in the ring R = Zp[x]/(xn + 1). �ey can thus be

3

masked very cheaply using mod-p arithmetic masking: each coe�cient is represented as a sum

of d + 1 additive shares modulo p. For some operations, however, this representation is less

convenient.

�is is in particular the case for the generation of the randomness at the beginning of the

algorithm, which consists of two polynomials y1,y2 with uniformly random coe�cients in a

subinterval [−k, k] of Zp. Generating such a random value in masked form is relatively easy

with Boolean masking, but seems hard to do e�ciently with arithmetic masking. �erefore,

we have to carry out a conversion from Boolean masking to mod-p arithmetic masking. Such

conversions have been described before [15,13], but only when the modulus p was a power of

2. Adapting them to our se�ings requires some tweaks.

Similarly, the rejection sampling step amounts to checking whether the polynomials in the

signature have their coe�cients in another interval [−k′, k′]. Carrying out the corresponding

comparison is again more convenient with Boolean masking, and hence we need a conversion

algorithm in the other direction, from mod-p arithmetic masking to Boolean masking. We are

again led to adapt earlier works on arithmetic-to-Boolean masking conversion [15,14] to the

case of a non-prime modulus.

Security of the signature scheme when revealing the “commitment” value. One of the operations

in signature generation is the computation of a hash function mapping to polynomials in R of

a very special shape. Masking the computation of this hash function would be highly ine�cient

and di�cult to combine with the rest of the algorithm. Indeed, the issue with hashing is not

obtaining a masked bit string (which could be done with something like SHA-3), but expanding

that bit string into a random-looking polynomial c of �xed, low Hamming weight in masked

form. �e corresponding operation is really hard to write down as a circuit. Moreover, even if

that could be done, it would be terrible for performances because subsequent multiplications by

c are no longer products by a known sparse constant, but full-blown ring operations that have

to be fully masked.

But more importantly, this masking should intuitively be unnecessary. Indeed, when we

see the signature scheme as the conversion of an identi�cation protocol under the Fiat–Shamir

transform, the hash function computation corresponds to the veri�er’s sampling of a random

challenge c a�er it receives the commitment value r from the prover. In particular, the veri�er

always learns the commitment value r (corresponding to the input of the hash function), so if

the identi�cation protocol is “secure”, one should always be able to reveal this value without

compromising security. But the security of the signature scheme only o�ers weak guarantees

on the security of the underlying identi�cation protocol, as discussed by Abdalla et al. [1].

In usual Fiat–Shamir signatures, this is never an issue because the commitment value can

always be publicly derived from the signature (as it is necessary for signature veri�cation). How-

ever, things are more subtle in the Fiat–Shamir with aborts paradigm, since the value r is not

normally revealed in executions of the signing algorithm that do not pass the rejection sampling

step. In our se�ing, though, we would like to unmask the value to compute the hash function

in all cases, before knowing whether the rejection sampling step will be successful. If we do so,

the side-channel a�acker can thus learn the pair (r, c) corresponding to rejected executions as

well, and this is not covered by the original security proof, nor does security with this additional

leakage look reducible to the original security assumption.

However, it is heuristically a hard problem to distinguish those pairs from uniform (an LWE-

like problem with a rather unusual distribution), so one possible approach, which requires no

change at all to the algorithm itself, is to redo the security proof with an additional, ad hoc

4

hardness assumption. �is is the main approach that we suggest in this paper. Although heuris-

tically safe, it is rather unsatisfactory from a theoretical standpoint, so we additionally propose

another approach:
9

compute the hash function not in terms of r itself, but of f(r) where f is

a statistically-hiding commitment scheme whose opening information is added to actual signa-

tures, but not revealed in executions of the algorithm that do not pass the rejection sampling.

Using a suitable f , f(r) can be e�ciently computed in masked form, and only the result needs

to be unmasked. It is then clear that the leakage of

(
f(r), c

)
is innocuous, and the modi�ed

scheme can be proved entirely with no additional hardness assumption. �e downside of this

approach is of course that the commitment key increases the size of the public key, the opening

information increases the size of signatures, and the masked computation of the commitment

itself takes a not insigni�cant amount of time. For practical purposes, we therefore recommend

the heuristic approach.

Security of masking schemes with output-dependent probes. In order to prove the security of

our masked implementation we see that we reveal some public value r or a commitment of

it. Consequently, we must adapt the notion of security from the threshold probing model to

account for public outputs; the idea here is not to state that public outputs do not leak relevant

information, but rather that the masked implementation does not leak more information than

the one that is released through public outputs. We capture this intuition by le�ing the simulator

depend on the distribution of the public outputs. �is extends the usual “non-interference” (NI)

security notion to a new, more general notion of “non-interference with public outputs” (NIo).

Security proofs. �e overall security guarantee for the masked implementation is established by

proving the security of individual gadgets and asserting the security of their combination. For

some gadgets, one establishes security in the usual threshold probing model, opening the pos-

sibility to resort to automated tools such as maskComp [4] to generate provably secure masked

implementations. For other gadgets, the proofs of security are given by exhibiting a simulator,

and checking its correctness manually. Finally, the main theorem is deduced from the proof of

correctness and security in the threshold probing model with public outputs for the masked

implementation, and from a modi�ed proof of security for the GLP scheme.

Organization of the paper. In §2, we describe the GLP signature scheme and the security

assumption on which its security is based. In §3, we present the new security notions used

in our proofs. �en, in §4, we describe how to mask the GLP algorithm at any masking order.

Finally, in §5, we describe an implementation of this masking countermeasure, and suggest some

possible e�ciency improvements.

2 �e GLP signature scheme

2.1 Parameters and security

Notations. �roughout this paper, we will use the following notations: n is a power of 2,

p is a prime number congruent to 1 modulo 2n, R is the polynomial ring modulo xn + 1,

R = Zp[x]/(xn + 1). �e elements of R can be represented by polynomials of degree n − 1
with coe�cients in the range [−p−12 , p−12]. For an integer k such that 0 < k ≤ (p − 1)/2, we

9

We are indebted to Vadim Lyubashevsky for suggesting this approach.

5

denote byRk the elements ofRwith coe�cients in the range [−k, k]. We write
$←− S for picking

uniformly at random in a set S or
$←− D for picking according to some distribution D. �e key

generation algorithm for the GLP signature scheme is as follows:

Algorithm 1: GLP key derivation

Result: Signing key sk, veri�cation key pk

1 s1, s2
$←−R1 //s1 and s2 have coe�cients in {−1, 0, 1}

2 a
$←−R

3 t← as1 + s2
4 sk← (s1, s2)
5 pk← (a, t)

Given the veri�cation key pk = (a, t), if an a�acker can derive the signing key, he can be

used to also solve a DCKp,n problem de�ned in [23].

De�nition 1 �e DCKp,n problem (Decisional Compact Knapsack problem) is the problem of

distinguishing between the uniform distribution overR×R and the distribution (a,as1+s2)with
s1,s2 uniformly random inR1.

In the security proof of our variant of the signature scheme, we introduce a new computa-

tional problem.

De�nition 2 �e R-DCKp,n problem (Rejected-Decisional Compact Knapsack problem) is the

problem of distinguishing between the uniform distribution overR×R×Dnα and the distribution

(a,ay1 + y2, c) where (a, c,y1,y2) is uniformly sampled in R× Dnα ×R2
k , conditioned by the

event s1c+ y1 /∈ Rk−α or s2c+ y2 /∈ Rk−α.

As shown in Appendix A.3, assuming the hardness of R-DCKp,n can be avoided entirely

by computing the hash value c not in terms of r = ay1 + y2, but of a statistically hiding

commitment thereof. �is approach shows that masking can be done based on the exact same

assumptions as the original scheme, but at some non-negligible cost in e�ciency.

To obtain a scheme that more directly follows the original one and to keep the overhead

reasonable, we propose to use R-DCKp,n as an extra assumption, which we view as a prag-

matic compromise. �e assumption is admi�edly somewhat arti�cial, but the same can be said

of DCKp,n itself to begin with, and heuristically, R-DCKp,n is similar, except that it removes

smaller (hence “easier”) instances from the distribution: one expects that this makes distinguish-

ing harder, even though one cannot really write down a reduction to formalize that intuition.

2.2 �e signature scheme

�is part describes the signature scheme introduced in [23]. Additional functions like transform
and compress introduced in [23] can be used to shorten the size of the signatures. Note however

that for masking purposes, we only need to consider the original, non-compressed algorithm

of Güneysu et al., which we describe below. Indeed, signature compression does not a�ect our

masking technique at all, because it only involves unmasked parts of the signature generation

algorithm (the input of the hash function and the returned signature itself). As a result, although

this paper only discusses the non-compressed scheme, we can directly apply our technique to

6

the compressed GLP scheme with no change, and in fact this is what our proof-of-concept im-

plementation in section 5 actually does.

�e signature scheme needs a particular cryptographic hash function, H : {0, 1}∗ → Dnα,

whereDnα is the set of polynomials inR that have all zero coe�cients except for at most α = 32
coe�cients that are in {−1,+1} (or α = 16 when using the updated parameters presented

in [10]).

Let k be a security parameter. Algorithms 2 and 3 respectively describe the GLP signature

and veri�cation. Here is the soundness equation for the veri�cation : az1+z2−tc = ay1+y2.

�e parameter k controls the trade-o� between the security and the runtime of the scheme.

�e smaller k gets, the more secure the scheme becomes and the shorter the signatures get

but the time to sign will increase. �e authors of the implementation of [23] suggest k = 214,

n = 512 and p = 8383489 for ≈ 100 bits of security and k = 215, n = 1024 and p = 16760833
for > 256 bits of security.

2.3 Security proof of the r-GLP variant

As mentioned above, masking the hash function of the GLP signature directly has a prohibitive

cost, and it is thus preferable to unmask the input r = ay1 + y2 to compute the hash value

c = H(r,m). Doing so allows a side-channel a�acker to learn the pair (r, c) corresponding to

rejected executions as well, and since that additional information is not available to the adver-

sary in the original se�ing, we need to show that it does not a�ect the security of the scheme.

�is stronger security requirement can be modeled as the unforgeability under chosen mes-

sage a�acks of a modi�ed version of the GLP signature scheme in which the pair (r, c) is made

public when a rejection occurs. We call this modi�ed scheme r-GLP, and describe it as Algo-

rithm 4. �e modi�cation means that, in the EUF-CMA security game, the adversary gets access

not only to correctly generated GLP signatures, but also to pairs (r, c) when rejection occurs,

which is exactly the se�ing that arises as a result of unmasking the value r. �e following the-

orem, proved in the Appendix A.2, states that the modi�ed scheme is indeed secure, at least if

we are willing to assume the hardness of the additional DCKp,n assumption.

�eorem 1. Let n, p, R and Dnα as de�ned in section 2.1. Assuming the hardness of the DCKp,n
and R-DCKp,n problems, the signature r-GLP is EUF-CMA secure in the random oracle model.

Algorithm 2: GLP signature

Data:m, pk, sk
Result: Signature σ

1 y1,y2
$←− Rk

2 c← H(r = ay1 + y2,m)
3 z1← s1c+ y1

4 z2← s2c+ y2

5 if z1 or z2 /∈ Rk−α then

6 restart

7 end

8 return σ = (z1, z2, c)

Algorithm 3: GLP veri�cation

Data:m, σ, pk
1 if z1, z2 ∈ Rk−α and

c = H(az1 + z2 − tc,m) then
2 accept

3 else

4 reject

5 end

7

Algorithm 4: Tweaked signature with public r

Data:m, pk = (a, t), sk = (s1, s2)
Result: Signature σ

1 y1
$←− Rk

2 y2
$←− Rk

3 r← ay1 + y2

4 c← H(r,m)
5 z1← s1c+ y1

6 z2← s2c+ y2

7 if z1 or z2 /∈ Rk−α then

8 (z1, z2)← (⊥,⊥)
9 end

10 return σ = (z1, z2, c, r)

Remark 1. As mentioned previously, we can avoid the non-standard assumption R-DCKp,n by

hashing not r but f(r) for some statistically hiding commitment f (which can itself be con-

structed under DCKp,n, or standard la�ice assumptions). See the Appendix A.2 of this paper for

details . �e downside of that approach is that it has a non negligible overhead in terms of key

size, signature size, and to a lesser extent signature generation time.

3 �reshold probing model with public outputs

In this section, we brie�y review the de�nition of the threshold probing model, and introduce

an extension to accommodate public outputs.

3.1 �reshold probing model

�e threshold probing model introduced by Ishai, Sahai and Wagner considers implementations

that operate over shared values [24].

De�nition 3 Let d be a masking order. A shared value is a (d + 1)-tuple of values, typically

integers or Booleans.

A (u, v)-gadget is a probabilistic algorithm that takes as inputs u shared values, and returns

distributions over v-tuples of shared values. (u, v)-gadgets are typically used to implement functions

that take u inputs and produce v outputs.

Gadgets are typically wri�en in pseudo-code, and induce a mapping from u-tuples of shared val-

ues (or equivalently u(d + 1)-tuples of values) to a distribution over v-tuples of values, where

the output tuple represents the joint distribution of the output shared values as well as all inter-

mediate values computed during the execution of the gadget.

We now turn to the de�nition of probing security. Informally, an implementation is d-probing

secure if and only if an adversary that can observe at most d intermediate values cannot recover

information on secret inputs.

De�nition 4 d-non-interference (d-NI): A gadget is d-non-interfering if and only if every set of

at most d intermediate variables can be perfectly simulated with at most d shares of each input.

8

De�nition 5 d-strong-non-interference (d-SNI): A gadget is d-strongly non interfering if and

only if every set of size d0 ≤ d containing d1 intermediate variables and d2 = d0 − d1 returned

values can be perfectly simulated with at most d1 shares of each input.

�is notion of security is formulated in a simulation-based style. It is however possible to pro-

vide an equivalent notion as an information �ow property in the style of programming language

security and recent work on formal methods for proving security of masked implementations.

�e maskComp tool. For certain composition proofs, we will use the maskComp tool from

Barthe et al. [4]. It uses a type-based information �ow analysis with cardinality constraints and

ensures that the composition of gadgets is d-NI secure at arbitrary orders, by inserting refresh

gadgets when required.

3.2 �reshold probing model with public outputs

�e security analysis of our masked implementation of GLP requires an adaptation of the stan-

dard notion of security in the threshold probing model. Speci�cally, our implementation does

not a�empt to mask the computation of H(r,m) at line 2 of Algorithm 2; instead, it recovers r
from its shares and then computes H(r,m). �is optimization is important for the e�ciency of

the masked algorithm, in particular because it is not immediately clear whether one can mask

the hash function H e�ciently—note that this kind of optimization is also reminiscent of the

method used to achieve e�cient sorting algorithms in multi-party computations.

From a security perspective, recombining r in the algorithm is equivalent to making r a

public output. In contrast with “return values”, we will refer to “outputs” as values broadcast on

a public channel during the execution of the masked algorithm. �e side-channel a�acker can

therefore use outputs in a�acks. Since the usual notions of NI and SNI security do not account

for outputs in that sense, we need to extend those notions of security to support algorithms

that provide such outputs. �e idea here is not to state that public outputs do not leak relevant

information, but rather that the masked implementation does not leak more information than

the one that is released through public outputs. We capture this intuition by le�ing the simulator

depend on the distribution of the public outputs.

De�nition 6 A gadget with public outputs is a gadget together with a distinguished subset of

intermediate variables whose values are broadcast during execution.

We now turn to the de�nition of probing security for gadgets with public outputs.

De�nition 7 d-non-interference for gadgets with public outputs(d-NIo): A gadget with public

outputs X is d-NIo if and only if every set of at most d intermediate variables can be perfectly

simulated with the public outputs and at most d shares of each input.

Again, it is possible to provide an equivalent notion as an information �ow property in the style

of programming language security.

Note that the use of public outputs induces a weaker notion of security.

Lemma 1. Let G be a d-NI-gadget. �en G is d-NIo secure for every subset X of intermediate

variables.

9

Informally, the lemma states that a gadget that does not leak any information also does not leak

more information than the one revealed by a subset of its intermediate variables. �e lemma is

useful to resort to automated tools for proving NI security of some gadgets used in the masked

implementations of GLP. In particular, we will use the maskComp tool.

Since d-NIo security is weaker than d-NI security, we must justify that it delivers the re-

quired security guarantee. �is is achieved by combining the proofs of security for the modi�ed

version of GLP with public outputs, and the proofs of correctness and security for the masked

implementations of GLP.

3.3 EUF-CMA-security in the d probing model

GLP is claimed EUF-CMA (existential unforgeablitiy under chosen message a�ack). It is thus

relevant to consider several accesses to the signing oracle for the masked algorithm. �e fol-

lowing de�nition introduces a notion that combines the EUF-CMA security property and the

security in the ISW model.

De�nition 1. A signature scheme (KeyGen, Sign,Verify)with signing key update algorithmKeyUpdate
is EUF-CMA-secure in the d-probing model if any PPT adversary has a negligible probability of win-

ning in the following game.

Adversary Challenger

(KeyGen,Sign,Verify,KeyUpdate)←−−−−−−−−−−−−−−−−−−
OKeyGen−−−−→

pk,LKeyGen←−−−−−−
(
(sk, pk),LKeyGen

)
← ExecObs(OKeyGen,KeyGen, 1λ)

q queries



m(1),O
(1)
Sign−−−−−−−→ (

σ(1),L
(1)
Sign

)
← ExecObs(O(1)

Sign, Sign, sk,m
(1))

σ(1),L
(1)
Sign←−−−−−− sk← KeyUpdate(sk)

.

.

.

m(q),O
(q)
Sign−−−−−−−→ (

σ(q),L
(q)
Sign

)
← ExecObs(O(q)

Sign, Sign, sk,m
(q))

σ(q),L
(q)
Sign←−−−−−− sk← KeyUpdate(sk)

forgery

{ m∗, σ∗−−−−→
b← Verify(pk,m∗, σ∗) ∧ (m∗ /∈ {m(1), . . . ,m(q)})∧
∧|OKeyGen| ≤ d ∧ ∀i ∈ {1, . . . , q}, |O(i)

Sign| ≤ d

Fig. 1. d probing EUF-CMA game. ExecObs is a universal Turing machine that takes as input a series of

observations, an algorithm and several possible arguments, and returns the output of the algorithm on

those arguments, together with the leakage values corresponding to the desired observations.

10

Remark 2. De�nition 1 assumes that the a�acker do not get any leakage during the KeyUpdate.

In this model, the KeyUpdate is not part of the signing procedure. Another de�nition could

assume that the a�acker also gets leakage during the KeyUpdate. In this alternative de�nition,

the total number of observations should be bounded by d. In other words, instead of the condition

∀i ∈ {1, . . . , q}, |O(i)
Sign| ≤ d, one should have

∑
i∈{1,...,q} |O

(i)
Sign| ≤ d.

4 Masked algorithm

In this section, the whole GLP scheme is turned into a functionally equivalent scheme secure

in the d-probing model with public outputs. Note that it su�ces to mask the key derivation in

the d-probing model and the signature in the d-probing model with public output r, since the

veri�cation step does not manipulate sensitive data.

Remark 3. �e masked version of GLP scheme with commitment has also been turned into a

functionally equivalent scheme proved secure in the d-probing model with public output r. Its

masked version is a li�le more complex, it is detailed in the Appendix B.

4.1 Overall structure

For simplicity, we will show the masking on a single iteration version of the signature. �e

masking can be generalized by calling the masked signature again if it fails.

To ensure protection against d-th order a�acks, we suggest a masking countermeasure with

d+1 shares for the following sensitive data : y1, y2, s1 and s2. All the public variables are (a, t)
(i.e., the public key), m (i.e., the message), RejSp (i.e., the bit corresponding to the success of

the rejection sampling), (z1, z2, c) (i.e., the signature). As mentioned before, because of the need

of r recombination, even if r is an intermediate value, it is considered as a public output.

Most operations carried out in the GLP signing algorithm are arithmetic operations modulo

p, so we would like to use arithmetic masking. It means for example that y1 will be replaced by

y1,0, ...y1,d ∈ R such that

y1 = y1,0 + ...+ y1,d mod p.

�e issue is that at some points of the algorithm, we need to perform operations that are be�er

expressed using Boolean masking. �ose parts will be extracted from both the key derivation

H1 FullAdd

DG

DG

a

(s1,i)0≤i≤d

(s2,i)0≤i≤d

(ti)0≤i≤d t

(s1,i)0≤i≤d

(s2,i)0≤i≤d

Fig. 2. Composition of mKD (�e blue gadgets will be proved d-NIo, the white ones will be proved d-NI)

11

H1 FullAdd

DG

DG

RS

FullAdd

FullAdd

H2

Hash

H2

H1

H1

a

(s1,i)0≤i≤d

(s2,i)0≤i≤d

m

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(ri)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RejSp

r c

z1

z2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

c

Fig. 3. Composition of mSign (�e blue gadgets will be proved d-NIo, the white ones will be proved d-NI

and the red one won’t be protected)

and the signature to be protected individually and then securely composed. �e di�erent new

blocks to achieve protection against d-th order a�acks are depicted herea�er and represented

in Figures 2 and 3:

– Generation of the shared data (DG), masked version of line 1 in Algorithm 2 and line 1 in

Algorithm 1, is a function to generate shares of y1, y2, s1 and s2. It will be described in

Algorithm 7, decomposed and proved d-NIo secure by decomposition.

– Rejection Sampling (RS), masked version of line 5 in Algorithm 2, is a test to determine if z1
and z2 belong to the set Rk−α. It will be detailed in Algorithm 16 and proved d-NI secure

by decomposition.

– Refresh and unmask (FullAdd) is a function that unmasks securely a variable by adding to-

gether its shares modulo pwithout leaking the partial sums. It will be described in Algorithm

17 and proved d-NIo secure and d-NI secure when used at the end.

– H1
and H2

are the elementary parts, masked versions of line 2, 3-4 and then 5-6 in Algo-

rithm 2. H1
is also the masked version of the instruction called in line 3 of the key derivation

algorithm (Algorithm 1). �ey are made of arithmetic computations. �ey are depicted in

Algorithm 18 and 19. �ey will be proved d-NI secure.

– Hash function, line 2 in Algorithm 2. As mentioned before, is le� unmasked because it ma-

nipulates only public data.

Algorithm 5 shows a high level picture of mSign with all these blocks and Algorithm 6 shows

mKD.

�e proofs of dNI or d-NIo security will be given in the following subsection. �en, the

composition will be proved in Section 4.3 to achieve global security in the d-probing model

with public outputs. �is yields the d-NIo security of the masked signature and masked key

generation algorithms in �eorems 2 and 3, respectively. By combining these results with the

re�ned analysis of the GLP signature in �eorem 1, one obtains the desired security guarantee,

as discussed in Section 3.

12

Algorithm 5: mSign

Data:m, pk = (a, t), sk = ((s1,i)0≤i≤d, (s2,i)0≤i≤d)
Result: Signature σ

1 (y1,i)0≤i≤d ← DG(k, d)
2 (y2,i)0≤i≤d ← DG(k, d)
3 (ri)0≤i≤d ← H1(a, (y1,i)0≤i≤d, (y2,i)0≤i≤d)
4 r← FullAdd((ri)0≤i≤d)
5 c← hash(r,m)
6 (z1,i)0≤i≤d ←H1

(c, (s1,i)0≤i≤d, (y1,i)0≤i≤d)
7 (z2,i)0≤i≤d ←H1

(c, (s2,i)0≤i≤d, (y2,i)0≤i≤d)
8 RejSp← RS((z1,i)0≤i≤d, (z2,i)0≤i≤d, k − α)
9 (z1,i)0≤i≤d ← H2(RejSp, (z1,i)0≤i≤d)

10 (z2,i)0≤i≤d ← H2(RejSp, (z2,i)0≤i≤d)
11 z1 ←FullAdd((z1,i)0≤i≤d)
12 z2 ←FullAdd((z2,i)0≤i≤d)
13 return σ = (z1, z2, c)

Algorithm 6: mKD

Result: Signing key sk, veri�cation key pk
1 (s1,i)0≤i≤d ← DG(1, d)
2 (s2,i)0≤i≤d ← DG(1, d)

3 a
$←−R

4 (ti)0≤i≤d ← H1(a, (s1,i)0≤i≤d, (s2,i)0≤i≤d)
5 t← FullAdd((ti)0≤i≤d)

6 sk← ((s1,i)0≤i≤d, (s2,i)0≤i≤d)
7 pk← (a, t)
8 return as public key (a, t)
9 return as secret key ((s1,i)0≤i≤d, (s2,i)0≤i≤d)

4.2 Masked gadgets

In this section each gadget will be described and proved d-NI or d-NIo secure. �e di�culty is

located in the gadgets containing Boolean/arithmetic conversions. In those gadgets (DG and RS)

a detailed motivation and description has been made.

Data generation (DG). In the unmasked GLP signing algorithm, the coe�cients of the “com-

mitment” polynomials y1, y2 are sampled uniformly and independently from an integer interval

of the form [−k, k]. In order to mask the signing algorithm, one would like to obtain those val-

ues in masked form, using order-d arithmetic masking modulo p. Note that since all of these

coe�cients are completely independent, the problem reduces to obtaining an order-d mod-p
arithmetic masking of a single random integer in [−k, k].

Accordingly, we will �rst create an algorithm called Random Generation (RG) which gener-

ates an order-d mod-p arithmetic masking of a single random integer in [−k, k]. Next, we will

use RG in an algorithm called Data Generation (DG) which generates a sharing of a value inRk .

13

Algorithm 7: Data Generation (DG)

Data: k and d
Result: A uniformly random polynomial y inRk in arithmetic masked form (yi)0≤i≤d.

1 (yi)0≤i≤d ← {0}d
2 for j = 0 to n− 1 do

3 (ai)0≤i≤d ← RG(k, d)
4 (yi)0≤i≤d ← (yi + aix

j)0≤i≤d
5 end

6 return (yi)0≤i≤d

DG is calling RG n times and is described in Algorithm 7. RG is described herea�er and will be

given in Algorithm 15.

Let us now build RG. Carrying out this masked random sampling in arithmetic form di-

rectly and securely seems di�cult. On the other hand, it is relatively easy to generate a Boolean

masking of such a uniformly random value. We can then convert that Boolean masking to an

arithmetic masking using Coron et al.’s higher-order Boolean-to-arithmetic masking conver-

sion technique [15]. �e technique has to be modi�ed slightly to account for the fact that the

modulus p of the arithmetic masking is not a power of two, but the overall structure of the al-

gorithm remains the same. To obtain a be�er complexity, we also use the Kogge–Stone adder

based addition circuit already considered in [14].

A more precise description of our approach is as follows. Let K = 2k + 1, and w0 be the

smallest integer such that 2w0 > K . Denote also by w the bit size of the Boolean masking we

are going to use; we should have w > w0 + 1 and 2w > 2p. For GLP masking, a natural choice,

particularly on a 32-bit architecture, would be w = 32.

Now the �rst step of the algorithm is to generate w0-bit values (x0i)0≤i≤d uniformly and

independently at random, and apply a multiplication-based share refreshing algorithm Refresh,

as given in Algorithm 8, to obtain a fresh w-bit Boolean masking (xi)0≤i≤d of the same value

x:

x =

d⊕
i=0

x0i =

d⊕
i=0

xi.

Note that x is then a uniform integer in [0, 2w0 − 1].

We then carry out a rejection sampling on x: if x ≥ K , we restart the algorithm. If this

step is passed successfully, x will thus be uniformly distributed in [0,K − 1] = [0, 2k]. Of

course, the test has to be carried out securely at order d. �is can be done as follows: com-

pute a random w-bit Boolean masking (ki)0≤i≤d of the constant (−K) (the two’s complement

of K over w bits; equivalently, one can use 2w − K), and carry out the d-order secure ad-

dition SecAdd
(
(xi)0≤i≤d, (ki)0≤i≤d

)
, given in Algorithm 9 (where Refresh denotes the d-SNI

multiplication-based refresh as proven in [4] and recalled in Algorithm 8). �e result is a Boolean

masking (δi)0≤i≤d of the di�erence δ = x − K in two’s complement form. In particular, the

most signi�cant bit b of δ is 0 if and only if x ≥ K . Since computing the most signi�cant bit

is an F2-linear operation, we can carry it out componentwise to obtain a masking (bi)0≤i≤d of

b with bi = δi � (w − 1). �e resulting bit b is non-sensitive, so we can unmask it to check

whether to carry out the rejection sampling.

14

Algorithm 8: Multiplication-based refresh algorithm for Boolean masking (Refresh)

Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the returned masks

Result: An independent Boolean masking (x′i)0≤i≤d of x
1 (x′i)0≤i≤d ← (xi)0≤i≤d
2 for i = 0 to d do
3 for j = i+ 1 to d do
4 pick a uniformly random w-bit value r
5 x′i ← x′i ⊕ r
6 x′j ← x′j ⊕ r
7 end

8 end

9 return (x′i)0≤i≤d

Algorithm 9: Integer addition of Boolean maskings (SecAdd), as generated by the

maskComp tool from the Kogge–Stone adder of [14]

Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of the masks

Result: A Boolean masking (zi)0≤i≤d of x+ y
1 (pi)0≤i≤d ← (xi ⊕ yi)0≤i≤d
2 (gi)0≤i≤d ← SecAnd

(
(xi)0≤i≤d, (yi)0≤i≤d, w

)
3 for j = 1 toW := dlog2(w − 1)e − 1 do

4 pow← 2j−1

5 (ai)0≤i≤d ← (gi � pow)0≤i≤d
6 (ai)0≤i≤d ← SecAnd

(
(ai)0≤i≤d, (pi)0≤i≤d, w

)
7 (gi)0≤i≤d ← (gi ⊕ ai)0≤i≤d
8 (a′i)0≤i≤d ← (pi � pow)0≤i≤d
9 (a′i)0≤i≤d ← Refresh

(
(a′i)0≤i≤d, w

)
10 (pi)0≤i≤d ← SecAnd

(
(pi)0≤i≤d, (a

′
i)0≤i≤d, w

)
11 end

12 (ai)0≤i≤d ← (gi � 2W)0≤i≤d
13 (ai)0≤i≤d ← SecAnd

(
(ai)0≤i≤d, (pi)0≤i≤d, w

)
14 (gi)0≤i≤d ← (gi ⊕ ai)0≤i≤d
15 (zi)0≤i≤d ←

(
xi ⊕ yi ⊕ (gi � 1)

)
0≤i≤d

16 return (zi)0≤i≤d

15

Algorithm 10: Mod-p addition of Boolean maskings (SecAddModp)

Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of the masks

(with 2w > 2p)

Result: A Boolean masking (zi)0≤i≤d of x+ y mod p
1 (pi)0≤i≤d ←

(
2w − p, 0, . . . , 0

)
2 (si)0≤i≤d ← SecAdd

(
(xi)0≤i≤d, (yi)0≤i≤d, w

)
3 (s′i)0≤i≤d ← SecAdd

(
(si)0≤i≤d, (pi)0≤i≤d, w

)
4 (bi)0≤i≤d ←

(
s′i � (w − 1)

)
0≤i≤d

5 (ci)0≤i≤d ← Refresh
(
(bi)0≤i≤d, w

)
6 (zi)0≤i≤d ← SecAnd

(
(si)0≤i≤d, (c̃i)0≤i≤d, w

)
7 (ci)0≤i≤d ← Refresh

(
(bi)0≤i≤d, w

)
8 (zi)0≤i≤d ← (zi)0≤i≤d ⊕ SecAnd

(
(s′i)0≤i≤d, (¬̃ci)0≤i≤d, w

)
9 return (zi)0≤i≤d

A�er carrying out these steps, we have obtained a Boolean masking of a uniformly random

integer in [0, 2k]. What we want is a mod-p arithmetic masking of a uniformly random integer

in the interval [−k, k], which is of the same length as [0, 2k]. If we can convert the Boolean

masking to an arithmetic masking, it then su�ces to subtract k from one of the shares and we

obtain the desired result. To carry out the Boolean-to-arithmetic conversion itself, we essentially

follow the approach of [15, §5], with a few changes to account for the fact that p is not a power

of two.

�e main change is that we need an algorithm for the secure addition modulo p of two val-

ues y, z in Boolean masked form (yi)0≤i≤d, (zi)0≤i≤d (assuming that y, z ∈ [0, p)). Such an

algorithm SecAddModp is easy to construct from SecAdd (see Algorithm 10 with SecAnd the

d-order secure bitwise AND operation from [24,32] and recalled in Algorithm 11) and the com-

parison trick described earlier. More precisely, the approach is to �rst compute (si)0≤i≤d =
SecAdd

(
(yi)0≤i≤d, (zi)0≤i≤d

)
, which is a Boolean sharing of the sum s = y + z without mod-

ular reduction, and then (s′i)0≤i≤d = SecAdd
(
(si)0≤i≤d, (pi)0≤i≤d

)
for a Boolean masking

(pi)0≤i≤d of the value −p in two’s complement form (or equivalently 2w − p). �e result is a

masking of s′ = s− p in two’s complement form. In particular, we have s ≥ p if and only if the

most signi�cant bit b of s′ is 0. Denote by r the desired modular addition y+ z mod p. We thus

have:

r =

{
s if b = 1;

s′ if b = 0.

As a result, we can obtain the masking of r in a secure way as:

(ri)0≤i≤d = SecAnd
(
(si)0≤i≤d, (b̃i)0≤i≤d

)
⊕ SecAnd

(
(s′i)0≤i≤d, (¬̃bi)0≤i≤d

)
,

where we denote by b̃ the extension of the bit b to the entire w-bit register (this is again an

F2-linear operation that can be computed componentwise). �is concludes the description of

SecAddModp.

Using SecAddModp instead of SecAdd in the algorithms of [15, §4], we also immediately ob-

tain an algorithm SecArithBoolModp for converting a mod-p arithmetic masking a =
∑d
i=0 ai mod

p of a value a ∈ [0, p) into a Boolean masking a =
⊕d

i=0 a
′
i of the same value. �e naive way

16

Algorithm 11: Bitwise AND of Boolean maskings (SecAnd) from [24,32]

Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of the masks

Result: A Boolean masking (ri)0≤i≤d of x ∧ y
1 (ri)0≤i≤d ← (xi ∧ yi)0≤i≤d
2 for i = 0 to d do
3 for j = i+ 1 to d do
4 pick a uniformly random w-bit value zij
5 zji ← (xi ∧ yj)⊕ zij
6 zji ← zji ⊕ (xj ∧ yi)
7 ri ← ri ⊕ zij
8 rj ← rj ⊕ zji
9 end

10 end

11 return (ri)0≤i≤d

Algorithm 12: Secure conversion from mod-p arithmetic masking to Boolean masking

(SecArithBoolModp); this is the simple version (cubic in the masking order)

Data: Arithmetic masking (ai)0≤i≤d modulo p of an integer a; the bit size w of the

returned masks (with 2w > 2p)

Result: A Boolean masking (a′i)0≤i≤d of a
1 (a′i)0≤i≤d ←

(
0, . . . , 0

)
2 for j = 0 to d do
3 (bi)0≤i≤d ←

(
aj , 0, . . . , 0

)
4 (bi)0≤i≤d ← Refresh

(
(bi)0≤i≤d, w

)
5 (a′i)0≤i≤d ← SecAddModp

(
(a′i)0≤i≤d, (bi)0≤i≤d, w

)
6 end

7 return (a′i)0≤i≤d

of doing so (see Algorithm 12), which is the counterpart of [15, §4.1], is to simply construct a

Boolean masking of each of the shares ai, and to iteratively apply SecAddModp to those masked

values. �is is simple and secure, but as noted by Coron et al., this approach has cubic complex-

ity in the masking order d (because SecAdd and hence SecAddModp are quadratic). A more

advanced, recursive approach allows to obtain quadratic complexity for the whole conversion:

this is described in [15, §4.2], and directly applies to our se�ing.

With both algorithms SecAddModp and SecArithBoolModp in hand, we can easily com-

plete the description of our commitment generation algorithm by mimicking [15, Algorithm

6]. To convert the Boolean masking (xi)0≤i≤d of x to a mod-p arithmetic masking, we �rst

generate random integer shares ai ∈ [0, p), 1 ≤ i ≤ d, uniformly at random. We then de�ne

a′i = −ai mod p = p − ai for 1 ≤ i ≤ d and a′0 = 0. �e tuple (a′i)0≤i≤d is thus a mod-p
arithmetic masking of the sum a′ = −

∑
1≤i≤d ai mod p. Using SecArithBoolModp, we con-

vert this arithmetic masking to a Boolean masking (yi)0≤i≤d, so that

⊕d
i=0 yi = a′. Now, let

17

Algorithm 13: Refresh-and-unmask algorithm for Boolean masking (FullXor) from [15]

Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the masks

Result: �e value x
1 (x′i)0≤i≤d ← FullRefresh

(
(xi)0≤i≤d, w

)
2 x← x′0
3 for i = 1 to d do
4 x← x⊕ x′i
5 end

6 return x

Algorithm 14: Stronger Refresh algorithm for Boolean masking (FullRefresh) from [12,

Algorithm 4]

Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the returned masks

Result: An independent Boolean masking (x′i)0≤i≤d of x
1 (x′i)0≤i≤d ← (xi)0≤i≤d
2 for i = 0 to d do
3 for j = 1 to d do
4 pick a uniformly random w-bit value r
5 x′0 ← x′0 ⊕ r
6 x′j ← x′j ⊕ r
7 end

8 end

9 return (x′i)0≤i≤d

(zi)0≤i≤d = SecAddModp
(
(xi)0≤i≤d, (yi)0≤i≤d

)
; this is a Boolean masking of:

z = (x+ a′) mod p =

(
x−

d∑
i=1

ai

)
mod p.

We then securely unmask this value using Coron et al.’s FullXor procedure, recalled in Al-

gorithms 13 and 14, and set a0 = z − k mod p. �en, we have:

d∑
i=0

ai mod p = z − k +
d∑
i=1

ai mod p = x− k −
d∑
i=1

ai +

d∑
i=1

ai mod p = x− k mod p.

�us, (ai)0≤i≤d is a correct mod-p arithmetic masking of a uniformly random value in [−k, k] as

required. �e whole procedure is summarized in Algorithm 15 and described in Figure 4 where

xGen stands for the generation of x0’s shares, Refresh for the multiplication-based refreshing

from [24,4], kGen for the generation of k’s shares,� for the right shi� of δ’s shares, FullX for

FullXor, aGen for the generation of a’s shares, SecABM for SecArithBoolModp, and SecAMp for

SecAddModp.

�e success probability of the rejection sampling step (the masked comparison to K) is

K/2w0
, and hence is at least 1/2 by de�nition of w0. �erefore, the expected number of runs

requiered to complete is at most 2 (and in fact, a judicious choice of k, such as one less than a

18

xGen Refresh SecAdd � FullX

kGen

if b = 1

aGen SecABMp SecAMp FullX

(x0
i)0≤i≤d (xi)0≤i≤d (δi)0≤i≤d (bi)0≤i≤d

(ki)0≤i≤d

b = 0

b = 1

(a′i)0≤i≤d

(xi)0≤i≤d

(yi)0≤i≤d (zi)0≤i≤d

a0

Fig. 4. Randomness Generation RG (�e green (resp. white, red) gadgets will be proved d-SNI (resp. d-NI,

unmasked))

Algorithm 15: Randomness generation (RG)

Data: k and d
Result: A uniformly random a integer in [−k, k] in mod-p arithmetic masked form

(ai)0≤i≤d.

1 generate uniformly random w0-bit values (x0i)0≤i≤d
2 (xi)0≤i≤d ← Refresh

(
(x0i)0≤i≤d

)
3 initialize (ki)0≤i≤d to a w-bit Boolean sharing of the two’s complement value

−K = −2k − 1

4 (δi)0≤i≤d ← SecAdd
(
(xi)0≤i≤d, (ki)0≤i≤d

)
5 (bi)0≤i≤d ← (δi)0≤i≤d � (w − 1)

6 b← FullXor
(
(bi)0≤i≤d

)
7 output b
8 if b = 0 then
9 restart

10 end

11 generate uniform integers (ai)1≤i≤d in [0, p)
12 a′i ← −ai mod p for i = 1, . . . , d
13 a′0 ← 0

14 (yi)0≤i≤d ← SecArithBoolModp
(
(a′i)0≤i≤d

)
15 (zi)0≤i≤d ← SecAddModp

(
(xi)0≤i≤d, (yi)0≤i≤d

)
16 a0 ← FullXor

(
(zi)0≤i≤d

)
17 return (ai − ki)0≤i≤d

19

power of two, can make the success probability very close to 1). Since all the algorithms we rely

on are at most in the masking order and (when using the masked Kogge–Stone adder of [14])

logarithmic in the size w of the Boolean shares, the overall complexity is thus O(d2 logw).

Now that the randomness generation is decribed, each intermediate gadget will be proven

either d-NI or d-NIo secure. �en, the global composition is proven d-NIo secure as well.

Lemma 2. Gadget SecAdd is d-NI secure.

Proof. Gadget SecAdd is built from the Kogge-Stone adder of [14] with secure AND and secure

linear functions such as exponentiations and Boolean additions. As to ensure its security with

the combination of these atomic masked functions, the tool maskComp was used to properly

insert the mandatory d-SNI refreshings, denoted as Refresh in Algorithm 9. As deeply explained

in its original paper, maskComp provides a formally proven d-NI secure implementation. ut

Lemma 3. Gadget SecAddModp is d-NI secure.

Proof. Gadget SecAddModp is built from the gadget SecAdd and SecAnd and linear operations

(like ⊕). We use the tool maskComp to generate automatically a veri�ed implementation. Note

that the tool automatically adds the two refreshs (line 5 and 7) and provides a formally proven

d-NI secure implementation. ut

Lemma 4. Gadget SecArithBoolModp is d-SNI secure.

Proof. A graphical representation of SecArithBoolModp is in Figure 5. Let O be a set of ob-

servations performed by the a�acker on the �nal returned value, let IAj be the set of internal

observations made in step j in the gadget SecAddModp (line 5), and IRj be the set of internal

observations made in the step j in the initialisation of b (line 3) or in the Refresh (line 4). As-

suming that |O|+
∑

(|IAj |+ |IRj |) ≤ d, the gadget is d-SNI secure, if we can build a simulator

allowing to simulate all the internal and output observations made by the a�acker using a set S
of shares of a such that |S| ≤

∑
(|IAj |+ |IRj |).

At the last iteration (see �gure 6), the set of observationsO∪IAd can be simulated using a set

Sa′d−1
of shares of a′ andSbd−1

of shares of bwith |Sa′d−1
| ≤ |O|+|IAd | and |Sbd−1

| ≤ |O|+|IAd |
(because the gadget SecAddModp is d-NI secure). Since the Refresh is d-SNI secure, the sets

Sbd−1
and IRd can be simulated using a set Sb′d−1

of input share with |Sb′d−1
| ≤ |IRd |. If IRd

is not empty, then Sb′d−1
may contain ad, so we add ad to S. For each iteration of the loop this

process can be repeated. At the very �rst iteration, several shares of a′ may be necessary to

simulate the set of observations. However, there are all initialized to 0, nothing is added to S.

Refresh

IRd

SecAMp

IAd

(ad, 0, ..., 0)

Sb′
d−1

Sbd−1

Sa′
d−1

O

Step d

Fig. 6. Last step of SecArithBoolModp with probes (�e green (resp. white) gadgets will be proved d-SNI

(resp. d-NI))

20

(0, 0, ..., 0)

Refresh SecAMp
(a0, 0, ..., 0) (bi)0≤i≤d

Step 0

Refresh SecAMp
(a1, 0, ..., 0) (bi)0≤i≤d

(a′i)0≤i≤d

(a′i)0≤i≤d

Step 1

…

Refresh SecAMp
(aj , 0, ..., 0) (bi)0≤i≤d

(a′i)0≤i≤d

Step j

…

Refresh SecAMp
(ad, 0, ..., 0) (bi)0≤i≤d

(a′i)0≤i≤d

Step d

Fig. 5. Graphical Representation of SecArithBoolModp (�e green (resp. white) gadgets will be proved

d-SNI (resp. d-NI))

At the end we can conclude that the full algorithm can be simulated using the set S of input

shares. Furthermore we have |S| ≤
∑
|IRj | (since aj is added in S only if IRj is not empty), so

we can conclude that |S| ≤
∑
|IAj |+ |IRj | which concludes the proof. ut

Lemma 5. Gadget RG is d-NIo secure with public output b.

Proof. Here we need to ensure that the returned shares of a cannot be revealed to the a�acker

through a d-order side-channel a�ack. Since xGen and aGen are just random generation of

shares, the idea is to prove that any set of t ≤ d observations on RG including these inputs can

be perfectly simulated with at most t shares of x and t shares of a.

Gadget RG is built with no cycle. In this case, from the composition results of [4], it is enough

to prove that each sub-gadget is d-NI to achieve global security. In our case, it is enough to prove

that each sub-gadget is d-NIo with the knowlegde of b to achieve global security.

From Lemmas 2, 4, and 3, SecAdd, SecArithBoolModp, and SecAddModp are d-NI secure.

� is trivially d-NI secure as well since it applies a linear function, gadget FullRefresh is d-SNI

secure thus d-NI secure by de�nition, and gadget kGen is generating shares of a non sensitive

value.

At this point, both gadgets FullXor have to be analyzed to achieve the expected overall se-

curity. We start with the gadget computing b. A�er its execution, b is broadcasted. Since b have

to be public, its knowledge does not impact the security but because of this output, the secu-

rity of RG will be d-NIo with public output b and not d-NI. FullXor is composed of a d-SNI

21

secure refreshing (made of d + 1 linear refreshing) of the shares and of a Boolean addition of

these resulting shares. �e a�acker is not able to observe intermediate variable of all the linear

refreshings (since he only has δ ≤ d available observations), thus we consider that the ith re-

freshing is le� unobserved. As a consequence, all the previous observations involve only one b’s
share and all the following observations are independent from b’s share except for their sum.

�at is, FullXor is d-NI secure. As for its second instance to compute a0, FullXor is still d-NI

secure but a0 is not revealed a�er its execution. While the a�acker is able to observe its value,

it is not returned for free. All the δ0 ≤ d observations made by the a�acker of this last instance

of FullXor can be perfectly simulated with a0 (for the observations performed a�er the unob-

served linear refreshing) and at most δ0 − 1 shares of z (for the observations made before the

unobserved linear refreshing). ut

Remark 4. �e knowledge of b (ie. the success of the randomness generation) is not sensitive

and we decided to consider it as a public output. To simplify the notation when we report the

security on the whole scheme, we will omit b in the public outputs.

Lemma 6. Gadget DG is d-NIo secure with public output b.

Proof. From Lemma 5, Gadget DG is d-NIo secure since it only consists in the linear application

of Gadget RG to build the polynomial coe�cients. ut

Rejection sampling (RS). Right before the rejection sampling step of the masked signing

algorithm, the candidate signature polynomials z1 and z2 have been obtained as sums of d +
1 shares modulo p, and we want to check whether the coe�cients in Z/pZ represented by

those shares are all in the interval [−k+ α, k− α]. Again, carrying out this check using mod-p
arithmetic masking seems di�cult, so we again resort to Boolean masking.

For each coe�cient zi,j of z1 and z2, one can trivially obtain a mod-p arithmetic masked

representation of both zi,j and −zi,j , and the goal is to check whether those values, when un-

masked modulo p in the interval [(−p+ 1)/2, (p− 1)/2)], are all greater than −k + α.

Let a be one of those values, and a = a0 + · · ·+ ad mod p its masked representation. Using

SecArithBoolModp as above, we can convert this mod-p arithmetic masking to a w-bit Boolean

masking (a′i)0≤i≤d. From this masking, we �rst want to obtain a masking of the centered rep-

resentative of a mod p, i.e. the value a′′ such that:

a′′ =

{
a if a ≤ (p− 1)/2,

a− p otherwise.

�is can be done using a similar approach as the one taken for randomness generation: compute

a Boolean masking (bi)0≤i≤d of the most signi�cant bit a−(p+1)/2 (which is 1 in the �rst case

and 0 in the second case), and a Boolean masking (si)0≤i≤d of the sum a− p. �en, a Boolean

masking of (a′′i)0≤i≤d is obtained as:

(a′′i)0≤i≤d = SecAnd
(
(a′i)0≤i≤d, (b̃i)0≤i≤d

)
⊕ SecAnd

(
(si)0≤i≤d,¬(b̃i)0≤i≤d

)
.

Finally, once this Boolean masking is obtained, it su�ces to add k − ω to it and check the most

signi�cant bit to obtain the desired test.

We cannot directly unmask that �nal bit, but we can compute it in masked form for all the

4n values to be tested, and apply SecAnd iteratively on all of these values to compute a Boolean

22

Algorithm 16: Rejection sampling (RS)

Data: �e 4n values a(j) to check, in mod-p arithmetic masked representation

(a
(j)
i)0≤i≤d.

Result: �e bit r equal to 1 if all values satisfy that a(j) + k − α ≥ 0, and 0 otherwise.

1 initialize (ri)0≤i≤d as a single-bit Boolean masking of 1
2 initialize (pi)0≤i≤d as a w-bit Boolean masking of −p
3 initialize (p′i)0≤i≤d as a w-bit Boolean masking of −(p+ 1)/2
4 initialize (k′i)0≤i≤d as a w-bit Boolean masking of k − α
5 for j = 1 to 4n do

6 (a′i)0≤i≤d ← SecArithBoolModp
(
(a

(j)
i)0≤i≤d

)
7 (δi)0≤i≤d ← SecAdd

(
(a′i)0≤i≤d, (p

′
i)0≤i≤d

)
8 (bi)0≤i≤d ← (δi)0≤i≤d � (w − 1)

9 (si)0≤i≤d ← SecAdd
(
(a′i)0≤i≤d, (pi)0≤i≤d

)
10 (ci)0≤i≤d ← Refresh

(
(bi)0≤i≤d

)
11 (a′i)0≤i≤d ← SecAnd

(
(a′i)0≤i≤d, (c̃i)0≤i≤d

)
12 (ci)0≤i≤d ← Refresh

(
(bi)0≤i≤d

)
13 (a′i)0≤i≤d ← (a′i)0≤i≤d ⊕ SecAnd

(
(si)0≤i≤d,¬(c̃i)0≤i≤d

)
14 (δi)0≤i≤d ← SecAdd

(
(a′i)0≤i≤d, (k

′
i)0≤i≤d

)
15 (bi)0≤i≤d ← (δi)0≤i≤d � (w − 1)

16 (ri)0≤i≤d ← SecAnd
(
(ri)0≤i≤d,¬(bi)0≤i≤d

)
17 end

18 r ← FullXor
(
(ri)0≤i≤d

)
19 return r

masked representation of the bit equal to 1 if all the coe�cients are in the required intervals,

and 0 otherwise. �is bit can be safely unmasked, and is the output of our procedure. �e whole

algorithm is summarized as Algorithm 16.

Since both SecArithBoolModp and SecAnd have quadratic complexity in the masking order

(and SecArithBoolModp has logarithmic complexity in the size w of the Boolean shares), the

overall complexity of this algorithm is O(nd2 logw).

Lemma 7. Gadget RS is d-NI secure.

Proof. From Lemmas 2 and 4, Gadgets SecArithBoolModp and SecAdd are d-NI secure. Gad-

get SecAnd is d-SNI secure from [32,4] and� is linear, thus trivially d-NI secure as well.

As done for Gadget SecAdd, the tool maskComp was called to generate a d-NI circuit from

the initial sequence of gadgets. It inserted gadgets Refresh (as shown in Algorithm 16) at speci�c

locations so that the overall circuit is formally proven to be d-NI secure. ut

Refresh and Unmask (FullAdd). �is part provides a computation of the sensitive value as

the sum of all its shares. It is a gadget with public output because the �nal value is returned and

also output. �is output is useful when FullAdd is used to recombine the intermediate value r.

Before summing, the sharing is given as input for FullRefresh [12, Algorithm 4], which

is made of a succession of d + 1 linear refresh operations. �ose linear refreshing modify the

23

Algorithm 17: FullAdd

Data: (ri)0≤i≤d
Result: r

1 if (ri)0≤i≤d = ⊥ then

2 return ⊥
3 end

4 (ri)0≤i≤d← FullRefresh ((ri)0≤i≤d)

5 r← (r0 + ...+ rd)
6 output (r)

7 return (r)

sharing by adding randoms elements to each share while keeping constant the value of the sum.

�eir number is strictly superior to dwhich is useful to consider that any share or strictly partial

sum of shares at the output of the �nal linear refreshing is independent from the original sharing.

�en, the following partial sums do not give any information about the original sharing which

is dependent of the sensitive values. �e whole algorithm, given in Algorithm 17 has a quadratic

complexity in d.

Lemma 8. Gadget FullAdd is d-NIo secure with public output r.

Proof. Let δ ≤ d be the number of observations made by the a�acker. We use a combination

of d + 1 linear refresh operations. �at is, there is at least one of the linear refreshing (we call

it the ith refreshing) which is not observed by the a�acker. For all the δ1 ≤ δ observations

preceding the ith refreshing in FullAdd, they can be perfectly simulated with at most δ1 shares

of r since each one of them involves at most one ri. As for the observations performed a�er the

ith refreshing, each one of them is independent from the ri inside the refresh mask and each

intermediate sum of the unmask part is independent of the ri as well with the knowledge of

r. �en, during the sum computation, all the ri can be simulated with fresh random that sum

to r (the public output). �us, at most δ shares of r and r itself are enough to simulate further

probes. ut

Remark 5. When FullAdd is used at the very end of the whole algorithm (mKD or mSign), the

public outputs are also among the returned values. �en, in those cases, it can be considered as

d-NI.

Transition parts. �e elementary parts H1
and H2

are quite easy to build since they perform

only linear operations on the input data. A masked implementation only performs these linear

operations on each share to securely compute the returned shares. H1
and H2

are described in

Algorithms 18 and 19.

Lemma 9. Gadgets H2
and H1

are d-NI secure.

Proof. �e straightforward proofs are the following.

– d-NI security of H1
. Let δ ≤ d be the number of observations made by the a�acker. �e

only possible observations are the sensitive values y1,i, y2,i and ay1,i + y2,i.�e proof

24

Algorithm 18: H1

Data: a, (y1,i)0≤i≤d
1 for 0 ≤ i ≤ d do
2 ri ← ay1,i + y2,i

3 end

4 return (ri)0≤i≤d

Algorithm 19: H2

Data: RejSp, (z1,i)0≤i≤d
1 if RejSp = 0 then
2 (z1,i)0≤i≤d ← ⊥
3 end

4 return (z1,i)0≤i≤d

consists in �lling an empty set I with at most δ indices in [0, d] such that the distribution

of any tuple (v1, ...,vδ) of intermediate variables of the block can be perfectly simulated

from the sensitive values. We build the set I with the indice i of each intermediate values in

(v1, ...,vδ). A�er building it, we simulate each one of them with the corresponding share

of the inputs. At the end, any set of δ ≤ d intermediate variables can be perfectly simulated

with at most δ shares of each sensitive input. �is is enough to prove that H1
is d-NI secure.

– d-NI security ofH2
. �e proof is very similar to the previous one. Let δ ≤ d be the number

of observations made by the a�acker. �e only possible observations are the sensitive values

z1,i or on the intermediate value RejSp. So, to simulate z1,i we use the corresponding

share of the input. And RejSp is a bit showing if the rejection sampling failed, it’s a public

information.

ut

Hash function. �e hash function does not manipulate any sensitive data. �us, it is le� un-

masked.

4.3 Proofs of composition

�eorem 2. �e masked GLP sign in Algorithm 5 is d-NIo secure with public output {r, b}.

Proof. From Lemmas 6,7 and 9, Algorithms DG, RS, H1
, and H2

are all d-NI. From Lemma 8,

FullAdd is d-NIo secure.

Let us assume that an a�acker has access to δ ≤ d observations on the whole signature

scheme. �en, we want to prove that all these δ observations can be perfectly simulated with

at most δ shares of each secret among y1, y2, s1 and s2 and the public variables. With such

a result, the signature scheme is then secure in the d-probing model since no set of at most d
observations would give information on the secret values.

In the following, we consider the following distribution of the a�acker’s δ observations: δ1
(resp. δ2) on the instance of DG that produces shares of y1 (resp. y2), δ3 on H1

, δ4 on FullAdd of

r, δ5 (resp. δ6) on H1
which produces z1 (resp. z2), δ7 on the instance of RS, δ8 (resp. δ9) on

H2
applied on z1 (resp. z2), and δ10 (resp. δ11) on FullAdd of z1 (resp. z2). Some other observa-

tions can be made on the Hash function, their number won’t ma�er during the proof. Finally,

we have

∑11
i=1 δi ≤

∑11
i=1 +δHash ≤ δ.

Now, we build the proof from right to le� as follows.

Both last FullAdd blocks in the very end of mSign are d-NI secure, then all the observations

performed during the execution of FullAdd on z1 (resp. z2) can be perfectly simulated with at

most δ10 (resp. δ11) shares of z1 (resp. z2).

25

H2
is d-NI secure, then all the observations from the call of H2

on z1 (resp. z2) can be

perfectly simulated with δ8 + δ10 (resp. δ9 + δ11) shares of the sensitive input z1 (resp. z2). �e

inputs z1 and z2 do not come from RS which do not act on them. �ey are directly taken from

the returned values of H1
.

RS is d-NI secure and do not return any sensitive element, then all the observations per-

formed in gadget RS can be perfectly simulated with at most δ7 shares of z1 and z2. So, a�er H1
,

the observations can be simulated with δ7 + (δ8 + δ10) shares of z1 and δ7 + (δ9 + δ11) shares

of z2.

H1
is d-NI secure as well, thus all the observations from the call of H1

on y1 can be perfectly

simulated with δ5+ δ7+ δ8+ δ10 ≤ δ shares of y1 and s1. Respectively, on y2, the observations

can be perfectly simulated from δ6 + δ7 + δ9 + δ11 ≤ δ shares of y2 and s2.

�e le� FullAdd gadget is d-NIo secure and do not return any sensitive element, then all the

observations performed in this gadget can be perfectly simulated with at most δ4 shares of r.

�e le� H1
gadget is d-NI secure, thus all the observations from its call can be perfectly

simulated with at most δ3 + δ4 shares of each one of the inputs y1 and y2.

DG is also d-NI secure, thus we need to ensure that the number of reported observations does

not exceed δ. At the end of DG, the simulation relies on (δ3 + δ4) + (δ5 + δ7 + δ8 + δ10) ≤ δ
shares of y1 and (δ3 + δ4) + (δ6 + δ7 + δ9 + δ11) ≤ δ shares of y2. With the additional δ1
(resp. δ2) observations performed on the �rst (resp. the second) instance of DG, the number of

observations remains below δ which is su�cient to ensure security of the whole scheme in the

d-probing model.

ut

�eorem 3. �e masked GLP key derivation in algorithm 6 is d-NIo secure with public output b.

Proof. From Lemmas 6 and 9, Algorithms DG, H1
are all d-NI. From Lemma 8, FullAdd is d-NIo

secure.

Here too, let us assume that an a�acker has access to δ ≤ d observations on the whole

signature scheme. �en, we want to prove that all these δ observations can be perfectly simulated

with at most δ shares of each secret among s1 and s2.

We now consider the following distribution of the a�acker’s δ observations: δ1 (resp. δ2) on

the instance of DG that produces shares of s1 (resp. s2), δ3 on H1
, and δ4 on FullAdd, such that∑4

i=1 δi = δ.

Now, we build the proof from right to le�: FullAdd is used at the very end of mKD, so it is

d-NI secure. �us, all the observations from the call of FullAdd can be perfectly simulated with

δ4 ≤ δ sensitive shares of the input t.

H1
is d-NI, thus all the observations from its call can be perfectly simulated with at most

δ3 + δ4 ≤ δ shares of each one of the inputs s1 and s2.

DG is d-NIo, thus we need to ensure that the number of reported observations does not

exceed δ. At the end of DG, the simulation relies on (δ3 + δ4) ≤ δ shares of s1 and s2. With the

additional δ1 (resp. δ2) observations performed on the �rst (resp. the second) instance of DG,

the number of observations on each block remains below δ. All the observations can thus be

perfectly simulated with the only knowledge of the outputs, that is, the key derivation algorithm

is this d-NIo secure.

ut

26

4.4 EUF-CMA security in the d-probing model

Let UnmaskedRefresh be the unmasked version of a refreshing gadget.

Algorithm 20: UnmaskedRefresh

Data: (xi)0≤i≤d
1 for 0 ≤ i ≤ d− 1 do

2 x′i ← $
3 end

4 x′d =
∑d
k=0 xk −

∑d−1
k=0 x

′
k

5 return (xi)0≤i≤d

�eorem 4. Assuming the hardness of theDCKp,n andR-DCKp,n problems, the signature scheme

r-GLP masked at order d with key update algorithm UnmaskedRefresh is EUF-CMA secure in the

d-probing model (see De�nition 1) and in the random oracle model.

Proof. Let Advd-probing-EUF-CMA

be the advantage of an adversary A against the d-probing-EUF-

CMA security game for r-GLP masked at order dwith key update algorithm UnmaskedRefresh.

Remark that b is drawn under a publicly known distribution and is independent of the secret.

Hence the advantage of the advantage of an adversary against the EUF-CMA security game for

GLP with returned value b, r is exactly AdvEUF-CMA

, the advantage of an adversary against the

EUF-CMA security game for r-GLP. �is advantage is negligible (see �eorem 1) and has been

quanti�ed in �eorem 5.

In the following, we will prove that Advd-probing-EUF-CMA = AdvEUF-CMA

which is su�cient

to conclude the proof. Indeed, thanks to theorem 5, under the hardness of the DCKp,n and R-

DCKp,n, AdvEUF-CMA

and so Advd-probing-EUF-CMA

will be negligible.

In the d-probing-EUF-CMA se�ing, the signature oracle called S is statefull. Lets us de�ne

this oracle by the following :

S(m,OSign) =
(
Sign(m, pk, sk(i−1)),LSign

)
where i ∈ [1, q] is the state, i.e. the index of the query, and sk

(i) = KeyUpdatei(sk) (with the

convention sk
0 = sk).

Leakage Simulators

– According to �eorem 2, the d−NIo security of GLP Sign implies the d−NI security of r-

GLP Sign. Indeed, in r-GLP Sign, the output values are actual returned values. One subtelty

is that the a�ackerA is able to make d observations on each call to the signature oracle but

not during the key refreshings.

For any set of at most d observations during the ith call to the signature oracle, the d−NI

security ensures the existence of a perfectly simulated leakage L
(i),Sim

Sign that is generated

from at most d shares of sk
(i−1)

. Because the a�acker is not able to get any observation

during the UnmaskedRefresh, if i 6= 1, the d shares of sk
(i−1)

can be perfectly simulated

from random. When i = 1, the observations are directly simulated with at most d shares

of sk
(0) = sk. In total, the q leakages

(
L

(1),Sim

Sign ...L
(q),Sim

Sign

)
are perfectly simulated from at

27

most d shares of sk. �us, they are independant from the unmasked value of the secret.

– Identically, according to �eorem 3, for any set of at most d observations during the key

generation, there exists a perfectly simulated leakage L Sim

KeyGen that is independant from the

unmasked value of the secret.

Here are the hybrid games involved in the security proof.

Game G0: �is game is the security game of the EUF-CMA security in the d-probing model.

1. OKeyGen ← A
2.

(
(sk, pk),LKeyGen

)
← ExecObs(OKeyGen,KeyGen, 1λ)

3. (m∗, σ∗)← AH,S(pk,LKeyGen)

4. return 1 if Verify(pk,m∗, σ∗) = 1 and |OKeyGen| ≤ d and ∀i ∈ {1, . . . , q}, |O(i)
Sign| ≤ d

and (m∗, σ∗) has not been returned by the signature oracle

return 0 otherwise.

Game G1: Let S’ be a copy of S that outputs L
(i),Sim

Sign instead of L
(i)
Sign for all i. In the following

game, all the leakages given to the a�acker are replaced by the simulated leakages.

1. OKeyGen ← A
2.

(
(sk, pk),LKeyGen

)
← ExecObs(OKeyGen,KeyGen, 1λ)

3. (m∗, σ∗)← AH,S′(pk,L Sim

KeyGen)

4. return 1 if Verify(pk,m∗, σ∗) = 1 and |OKeyGen| ≤ d and ∀i ∈ {1, . . . , q}, |O(i)
Sign| ≤ d

and (m∗, σ∗) has not been returned by the signature oracle

return 0 otherwise.

By de�nition of L Sim
, this game is perfectly indistinguisable from G0.

Game G2: �is game is the security game of the EUF-CMA security.

1. (sk, pk)← KeyGen(1λ)
2. (m∗, σ∗)← AH,Sign(·,sk)(pk)
3. return 1 i� Verify(pk,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned by the oracle

Sign(·, sk).
Since in game G1, |OKeyGen| ≤ d and |O(i)

Sign| ≤ d for all i ∈ [1, q], having access to L Sim
pro-

vides no advantage to the a�acker. �en, the advantage for G1 is the same as the advantage

for G2.

Finally Advd-probing-EUF-CMA = AdvEUF-CMA

. ut

5 Implementation of the countermeasure

We have carried out a completely unoptimized implementation of our masking countermea-

sure based on a recent, public domain implementation of the GLP signature scheme called

GLYPH [10,11]. �e GLYPH scheme actually features a revised set of parameters supposedly

achieving a greater level of security (namely, n = 1024, p = 59393, k = 16383 and α = 16),

as well as a modi�ed technique for signature compression. We do not claim to vouch for those

changes, but stress that, for our purposes, they are essentially irrelevant. Indeed, the overhead

of our countermeasure only depends on the masking order d, the bit size w of Boolean masks

(which should be chosen as w = 32 both for GLYPH and the original GLP parameters) and the

degree n of the ring R (which is the same in GLYPH as in the high-security GLP parameters).

28

�erefore, our results on GLYPH should carry over to a more straightforward implementation

of GLP as well.

Implementation results on a single core of an Intel Core i7-3770 CPU are provided in Table 1.

In particular, we see that the overhead of our countermeasure with 2, 3 and 4 shares (secure in

the d-probing model for d = 1, 2, 3 respectively) is around 15×, 30× and 73×. In view of the

complete lack of optimizations of this implementation, we believe that those results are quite

promising. �e memory overhead is linear in the masking order, so quite reasonable in practice

(all masked values are simply represented as a vector of shares).

For future work, we mention several ways in which our implementation could be sped up:

– For simplicity, we use a version of SecArithBoolModp with cubic complexity in the mask-

ing order, as in [15, §4.1]. Adapting the quadratic algorithm of [15, §4.2] should provide a

signi�cant speed-up. Moreover, for small values of d, Coron’s most recent algorithm [13]

should be considerably faster. However, the technique from [13] unfortunately has an over-

head exponential in the masking order, so it is not suitable for our purpose of masking GLP

at any order.

– Several of our algorithms call SecAdd on two masked values one of which is actually a

public constant. One could use a faster SecAddConst procedure that only protect the secret

operand instead.

– Our algorithms are generic, and do not take advantage of the special shape of k for example.

In the case of GLYPH, a comparison to k = 214 − 1 could be greatly simpli�ed.

– Many other more technical improvements are also possible: for example, we have made no

a�empt to reduce the number of unnecessary array copies.

6 Conclusion

In this paper, we have described a provably secure masking of the GLP la�ice-based signature

scheme, as well as a proof-of-concept implementation thereof. �e security proof itself involved

a number of new techniques in the realm of masking countermeasures. Our method should ap-

ply almost identically to other la�ice-based Fiat–Shamir type signature schemes using uniform

distributions in intervals (as opposed to Gaussian distributions). �is includes the Bai–Galbraith

signature scheme [2], as well as the recently proposed Dilithium signature [18].

We have mostly ignored the issue of signature compression, which is an important one in all

of these constructions, GLP included. However, it is easy to see that compression can be securely

applied completely separately from our countermeasure: this is because it only a�ects already

Table 1. Implementation results. Timings are provided for 100 executions of the signing and veri�cation

algorithms, on one core of an Intel Core i7-3770 CPU-based desktop machine.

Number of shares (d+ 1) Unprotected 2 3 4 5 6

Total CPU time (s) 0.540 8.15 16.4 39.5 62.1 111

Masking overhead — ×15 ×30 ×73 ×115 ×206

29

generated signatures (which are non-sensitive) as well as the input to the hash function (which

is already unmasked in our technique).

On the other hand, extending our approach to schemes using Gaussian distributions appears

to be really di�cult: neither Boolean masking nor arithmetic masking with uniform masks seems

particularly well-suited to address the problem. One way to tackle the problem might be to con-

sider masking with non-uniform noise, and only achieving statistically close instead of perfect

simulatability. Developing such a framework, however, is certainly a formidable challenge.

Masking hash-and-sign type signatures in using GPV la�ice trapdoors is probably even

harder, as they involve Gaussian sampling not only in Z but on arbitrary subla�ices of Zn,

with variable centers. It seems unlikely that a masked GPV signature scheme can achieve a

reasonable level of e�ciency.

Finally, while we have used the maskComp tool to securely instantiate the masked versions

of some of the gadgets we use in our construction, it would be interesting to leverage recent

advances in veri�cation [3] and synthesis [4] of masked implementations in a more systematic

way in the la�ice-based se�ing. Even for veri�cation, the sheer size of the algorithms involved

poses signi�cant challenges in terms of scalability; however, automated tool support would be

invaluable for the further development of masking in the postquantum se�ing.

Acknowledgements. We are indebted to Vadim Lyubashevsky for fruitful discussions, and

to the reviewers of EUROCRYPT for their useful comments. We acknowledge the support of

the French Programme d’Investissement d’Avenir under national project RISQ. �is work is

also partially supported by the European Union PROMETHEUS project (Horizon 2020 Research

and Innovation Program, grant 780701) and ONR Grant N000141512750. �is research has been

partially funded by ANRT under the programs CIFRE N 2016/1583.

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identi�cation to signatures via the Fiat-

Shamir transform: Minimizing assumptions for security and forward-security. In L. R. Knudsen, editor,

EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer, Heidelberg, Apr. / May 2002.

2. S. Bai and S. D. Galbraith. An improved compression technique for signatures based on learning with

errors. In J. Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 28–47. Springer, Heidelberg,

Feb. 2014.

3. G. Barthe, S. Belaı̈d, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub. Veri�ed proofs of higher-

order masking. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,

pages 457–485. Springer, Heidelberg, Apr. 2015.

4. G. Barthe, S. Belaı̈d, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini. Strong non-

interference and type-directed higher-order masking. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,

A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages 116–129. ACM Press, Oct. 2016.

5. C. Baum, I. Damgåard, S. Oechsner, and C. Peikert. E�cient commitments and zero-knowledge pro-

tocols from Ring-SIS with applications to la�ice-based threshold cryptosystems. Cryptology ePrint

Archive, Report 2016/997, 2016. http://eprint.iacr.org/2016/997.

6. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.

In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 390–399. ACM Press, Oct. / Nov.

2006.

7. N. Bindel, J. A. Buchmann, and J. Krämer. La�ice-based signature schemes and their sensitivity to fault

a�acks. In P. Maurine and M. Tunstall, editors, FDTC 2016, pages 63–77. IEEE Computer Society, 2016.

30

http://eprint.iacr.org/2016/997

8. L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, gauss, and reload - A cache a�ack on

the BLISS la�ice-based signature scheme. In B. Gierlichs and A. Y. Poschmann, editors, CHES 2016,

volume 9813 of LNCS, pages 323–345. Springer, Heidelberg, Aug. 2016.

9. S. Chari, J. R. Rao, and P. Rohatgi. Template a�acks. In B. S. Kaliski Jr., Çetin Kaya. Koç, and C. Paar,

editors, CHES 2002, volume 2523 of LNCS, pages 13–28. Springer, Heidelberg, Aug. 2003.

10. A. Chopra. GLYPH: A new insantiation of the GLP digital signature scheme. Cryptology ePrint Archive,

Report 2017/766, 2017. http://eprint.iacr.org/2017/766.

11. A. Chopra. So�ware implementation of GLYPH. GitHub repository, 2017. https://github.
com/quantumsafelattices/glyph.

12. J.-S. Coron. Higher order masking of look-up tables. In P. Q. Nguyen and E. Oswald, editors, EURO-

CRYPT 2014, volume 8441 of LNCS, pages 441–458. Springer, Heidelberg, May 2014.

13. J.-S. Coron. High-order conversion from boolean to arithmetic masking. Cryptology ePrint Archive,

Report 2017/252, 2017. http://eprint.iacr.org/2017/252.

14. J.-S. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala. Conversion from arithmetic to Boolean

masking with logarithmic complexity. In G. Leander, editor, FSE 2015, volume 9054 of LNCS, pages

130–149. Springer, Heidelberg, Mar. 2015.

15. J.-S. Coron, J. Großschädl, and P. K. Vadnala. Secure conversion between Boolean and arithmetic

masking of any order. In L. Batina and M. Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages

188–205. Springer, Heidelberg, Sept. 2014.

16. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing a�acks to noisy leak-

age. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440.

Springer, Heidelberg, May 2014.

17. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. La�ice signatures and bimodal Gaussians. In

R. Cane�i and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56. Springer,

Heidelberg, Aug. 2013.

18. L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS – dilithium:

Digital signatures from module la�ices. Cryptology ePrint Archive, Report 2017/633, 2017. http:
//eprint.iacr.org/2017/633.

19. T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi. Loop-abort faults on la�ice-based Fiat-Shamir

and hash-and-sign signatures. In R. Avanzi and H. M. Heys, editors, SAC 2016, volume 10532 of LNCS,

pages 140–158. Springer, Heidelberg, Aug. 2016.

20. T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi. Side-channel a�acks on BLISS la�ice-based

signatures: Exploiting branch tracing against strongSwan and electromagnetic emanations in micro-

controllers. In B. M. �uraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 17, pages

1857–1874. ACM Press, Oct. / Nov. 2017.

21. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard la�ices and new cryptographic

constructions. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,

May 2008.

22. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-

message a�acks. SIAM J. Comput., 17(2):281–308, 1988.

23. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical la�ice-based cryptography: A signature

scheme for embedded systems. In E. Prou� and P. Schaumont, editors, CHES 2012, volume 7428 of

LNCS, pages 530–547. Springer, Heidelberg, Sept. 2012.

24. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing a�acks. In

D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, Aug. 2003.

25. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to la�ice and factoring-based signatures. In

M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, Dec.

2009.

26. V. Lyubashevsky. La�ice signatures without trapdoors. In D. Pointcheval and T. Johansson, editors,

EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidelberg, Apr. 2012.

27. T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-secure and masked ring-LWE

implementation. Cryptology ePrint Archive, Report 2016/1109, 2016. http://eprint.iacr.
org/2016/1109.

31

http://eprint.iacr.org/2017/766
https://github.com/quantumsafelattices/glyph
https://github.com/quantumsafelattices/glyph
http://eprint.iacr.org/2017/252
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2016/1109
http://eprint.iacr.org/2016/1109

28. P. Pessl, L. G. Bruinderink, and Y. Yarom. To BLISS-B or not to be: A�acking strongSwan’s implemen-

tation of post-quantum signatures. In B. M. �uraisingham, D. Evans, T. Malkin, and D. Xu, editors,

ACM CCS 17, pages 1843–1855. ACM Press, Oct. / Nov. 2017.

29. T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced la�ice-based signatures on recon�gurable hard-

ware. In L. Batina and M. Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages 353–370. Springer,

Heidelberg, Sept. 2014.

30. O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Additively homomorphic Ring-

LWE masking. In T. Takagi, editor, PQCrypto 2016, volume 9606 of LNCS, pages 233–244. Springer,

2016.

31. O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede. A masked ring-LWE implementation. In

T. Güneysu and H. Handschuh, editors, CHES 2015, volume 9293 of LNCS, pages 683–702. Springer,

Heidelberg, Sept. 2015.

32. M. Rivain and E. Prou�. Provably secure higher-order masking of AES. In S. Mangard and F.-X.

Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 413–427. Springer, Heidelberg, Aug. 2010.

32

Appendices

A Security Proof for rGLP and rGLP with commitment

A.1 Mathematical preliminaries

Let us delay the security proof for a bit to expose useful probabilistic tools we are going to use.

Concentration bounds for inner product of uniform vectors.

Proposition 1. Let u = (u1, . . . , un)
T ∈ Rn a �xed vector and x = (x1, . . . , xn)

T
a random

uniform vector of {−1, 0, 1}n. �en 〈u, x〉 satis�es

E
[
es〈x,u〉

]
≤ e

‖u‖22s
2

2 ,

for any s ∈ R

�is �rst concentration inequality is classical in the probability literature and asserts that the

scalar product between a random uniform vector and a �xed vector yields a subgaussian variable.

For completeness purpose we expose a short proof of this claim.

Proof. Let choose s ∈ R, then we have by linearity and independence:

E
[
e〈u,x〉

]
= E

[
e
∑n
i=1 uixi

]
=

n∏
i=1

E [esxiui] (Independence of the xi)

≤
n∏
i=1

e
s2|ui|

2

2 (Hoe�ding Lemma)

= e
‖u‖22s

2

2 .

ut

Proposition 2. Let u = (u1, . . . , un)
T ∈ Rn a �xed vector and x = (x1, . . . , xn)

T
a uniformly

random vector of {−1, 0, 1}n, with Hamming weight at most α,

Pr
[
|〈u, x〉| ≥

√
4α/3 · ‖u‖∞

]
≤ 1

2
.

�is second concentration bound gives a more precise result in the case where the �xed vector

is sparse.

Proof. Denote by I the support of x. By symmetry of the distribution of x, E(〈u, x〉) = 0, but

by linearity and independence:

E
[
〈u, x〉2

]
=
∑
i6=j∈I

uiujE [xi]E [xj] +
∑
i∈I

u2iE
[
x2i
]
≤ 2α

3
‖u‖2∞.

We then conclude by Bienaymé–Tchebychev inequality. ut

34

A reduction from a variant of DCK. In all of the following, for any �nite set S, we denote

generically by U(S) the uniform distribution over S. Let us �x γ a positive integer. Let now uγ
be the convolution U({−1, 0, 1})?U({−γ, . . . , γ}), that is the distribution obtained when sum-

ming two independent random variables U and V , drawn respectively under U({−1, 0, 1}) and

U({−γ, . . . , γ}) We extend this distribution toRγ by sampling independently the n coe�cients

from the distribution uγ , and call it Ũγ

Lemma 10. �e statistical distance between Ũγ and U(Rγ), is bounded by n
2γ + n

γ2 .

Proof. Let U and V be two independent random variables, drawn respectively under U({1 −
γ, . . . , γ − 1}) and U({−1, 0, 1}). We then have directly:

∆(Ũγ ,U(Rγ)) ≤ n∆(uγ ,U({−γ, . . . , γ})))

≤ n
∑

t∈{−γ,...,γ}

∣∣∣∣PrU,V
[U + V = t]− (2γ + 1)−1

∣∣∣∣
= n

∑
t∈{−γ,...,γ}

∣∣∣∣∣∣
∑

v∈{−1,0,1}

1

3
Pr
U

[U = t− v]− (2γ + 1)−1

∣∣∣∣∣∣
= n

∑
t∈{1−γ,...,γ−1}

∣∣∣∣∣∣
∑

v∈{−1,0,1}

1

3
Pr
U

[U = t− v]− (2γ + 1)−1

∣∣∣∣∣∣
+ n

∣∣∣∣13 Pr
U

[U = 1− γ]− (2γ + 1)−1

∣∣∣∣+ n

∣∣∣∣13 Pr
U

[U = γ − 1]− (2γ + 1)−1

∣∣∣∣
= n

∑
t∈{1−γ,...,γ−1}

∣∣(2γ − 1)−1 − (2γ + 1)−1
∣∣+ 2n

∣∣∣∣13(2γ − 1)−1 − (2γ + 1)−1

∣∣∣∣
≤ n(2γ + 1)

∣∣(2γ − 1)−1 − (2γ + 1)−1
∣∣

= n

∣∣∣∣2γ + 1

2γ − 1
− 1

∣∣∣∣
<

n

2γ
+

n

γ2
,

the �nal domination being obtained by looking at the Laurent development of
2γ+1
2γ−1

.

We now introduce a variant of the DCKp,n problem where the terms s1, s2 are now sampled

from the distribution Ũγ .

De�nition 8 �e S-DCKp,n,γ problem (Summed-Decisional Compact Knapsack problem) is

the problem of distinguishing between the uniform distribution over R × R and the distribution

(a,as1 + s2) with s1,s2 independently drawn under Ũγ .

Since the support of Ũγ is larger than the support originally used in the DCKp,n problem,

it seems natural to suppose that the DCKp,n is somewhat easier to solve than the introduced

S-DCKp,n,γ . �is intuition is formalized in Proposition 3.

Proposition 3. �e DCKp,n problem is at most as hard as the S-DCKp,n,γ problem.

35

Proof. Any challenge (a,u) of theDCKp,n problem can be transformed in a challenge for (a,u′)
for the S-DCKp,n,γ problem by le�ing u′ = u + au1 + u2 with u1,u2 independently drawn

under the uniform distribution overRγ−1, by de�nition of Ũγ . Indeed, ifu is of the form as1+s2
for s1, s2 drawn independently and uniformly in Rγ , then u′ = a(s1 + u1) + (s2 + u2), with

the (si + ui) independently drawn under Ũγ . If u is uniform in R, then u′ remains uniform in

R.

Collision probability for linear hashing over R.

Lemma 11. Let 0 < γ < p and a ∈ R, then for any s1, s2 ∈ R2
γ drawn under Ũγ , there exists

another pair s′1, s
′
2 ∈ R2

γ such that as1 + s2 = as′1 + s′2 with probability at least

1− pn

(2γ+1)2n −
2n
γ −

2n
γ2 .

Proof. Let a ∈ R and de�ne the linear function φa : (x,y) 7→ ax + y. �is function maps a

set of p2n elements to a set of pn elements and so any vector in the image of φa admits at most

pn preimages. �en there exists at most pn pairs (x,y) in R2
γ such that φa(x,y) 6= φa(x

′,y′)
for every other (x′,y′) ∈ R2

γ . Hence the probability of uniformly drawn vector not to have a

second preimage through φa is at most

pn

(2γ + 1)2n
.

We then conclude with using the statistical distance between the uniform distribution and Ũγ .

ut

A.2 Security proof for the r-GLP signature scheme

In this section, we present a security proof for our r-GLP signature scheme. �e inforgability

property of the scheme under the hardness of both the DCK and R-DCK problems, is captured

by the following theorem:

�eorem 5. �e probability that an adversary A, who makes at most qh queries to the random

oracleH and runs in time T succeeds in forging a signature for the oracle S0 is upper bounded by:

δ ≤
√
εDCK(T)

C
+ εR-DCK(T) + (1− pr)

qh
pn

+ pr
qh

(2k + 1)n
+ 2εDCK(T)

with:

C =
Aγ
32

(
1−

(
n

2γ

)2
)(

1−
(√

p

(2γ)

)−2n

− n

(2γ)

)
,

and

Aγ = sup
x

[
1− 2e−x − 4

√
2(2k + γ

√
16x/3)

√
x+ logn/p

]
, pr =

(
1− 2α

2k + 1

)2n

,

for 1 ≤ γ ≤ p.

36

Algorithm 21: Signature oracle S0

Data:m, pk = (a, t), sk = (s1, s2)
Result: Signature σ

1 y1
$←− Rk

2 y2
$←− Rk

3 r← ay1 + y2

4 c← H(r,m)
5 z1← s1c+ y1

6 z2← s2c+ y2

7 if z1 or z2 /∈ Rk−α then

8 return r
9 end

10 return σ = (z1, z2, c)

Algorithm 22: Signature oracle S1

Data:m, pk = (a, t), sk = (s1, s2)
Result: Signature σ

1 y1,y2
$←− Rk

2 r← ay1 + y2

3 c← H(r,m)
4 z1← s1c+ y1

5 z2← s2c+ y2

6 if z1 or z2 /∈ Rk−α then

7 r
$←− R; Program H(r,m) = c

8 return r

9 end

10 return σ = (z1, z2, c)

Description of the hybrid games involved in the security proof.

Game G0. �is game is the security game of the existential unforgeability under chosen mes-

sage a�ack [22].

1. (s1, s2), (a, t)← KeyGen()
2. (m∗, σ∗)← AH,S0(s1,s2)(a, t)
3. return 1 if (Verify(a, t,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned by the oracle

S0) 0 otherwise.

�e signing oracle S0 is described in Algorithm 21.

Game G1. �is game is the same one as in G0 except that the Signing oracle is replaced by the

oracle S1 described in Algorithm 22:

1. (s1, s2), (a, t)← KeyGen()
2. (m∗, σ∗)← AH,S1(s1,s2)(a, t)
3. return 1 if (Verify(a, t,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned by the oracle

S1) 0 otherwise.

�e only di�erence between the actual signing algorithm and the algorithm in S1 is that in

this oracle, when the rejection sampling fails, a fresh commitment value r is generated from

the random oracle, independently of the values taken by y1 and y2.

Game G2. �is game is the same one as in G1 except that the Signing oracle is replaced by the

oracle S2 described in Algorithm 23:

1. (s1, s2), (a, t)← KeyGen()

2. (m∗, σ∗)← AH,S2 (a, t)
3. return 1 if (Verify(a, t,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned by the oracle

S1) 0 otherwise.

�e di�erence between G1 and G2 is that the returned values of the random oracleH is now

chosen at random from the set Dnα, so that this oracle does not use the secret key anymore.

Game G3. �e game is now slightly di�erent from the previous one, but the oracle used in this

game is still the same, that is S2, described in Algorithm 23. �e di�erence between the

these two games mainly lies in the fact that the domain from which the keys are drawn is

extended toRγ , under the distribution Ũγ . We ultimately want to show that a forger against

this game can be used to solve an instance of the DCK problem.

input: (a, t0) challenge of DCKp,n

37

1. (s1, s2)←$ Ũ2
γ

2. a←$ R
3. t← as1 + s2
4. (m∗, σ∗)← AH,S2(a, t)
5. return 1 if (Verify(a, t,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned by the oracle

S1) 0 otherwise.

Algorithm 23: Signature oracle S2

Data:m, pk = (a, t)
Result: Signature σ

1 c
$←− Dnα

2 B
$←− Bernoulli

((
1− 2α

2k+1

)2n)
3 if B = 1 then

4 r
$←− R

5 Program H(r,m) = c
6 return r

7 else

8 z1
$←− Rk−α

9 z2
$←− Rk−α

10 r← az1 + z2 − tc

11 end

12 Program H(r,m) = c
13 return σ = (z1, z2, c)

Proof of�eorem5. Firstly we establish indistinguishability results between the gamesG0 and

G1, then between G1 and G2 and eventually between G2 and G3. �ese results are formalized

in Lemma 12, Lemma 13 and Lemma 14. In a second time we show in Lemma 15 how we can

construct a distinguisher for the DCK problem from an adversary that is able to win the game

S3 with non-negligible probability. �e result of �eorem 5 is then a direct consequence of the

triangular inequality.

Before going into the details of these lemmas and since this result will be used multiple time

in the proof, we recall that the probability pr of ge�ing accepted by the rejection sampling in

the signature (or equivalently in the oracle S0.

pr =

(
1− 2α

2k + 1

)2n

Lemma 12 (Computational indistinguishability of G0 and G1). Let A be an adversary of

time complexity bounded by T , having access to either the signing algorithm S0 or the oracle S1,
and limited to perform at most qh queries to theH oracle (this count includes the calls that can be

38

performed while calling the signing oracles too). Its computational advantage in distinguishing the

signing algorithm S0 from S1 is bounded by:

εR-DCK(T) + (1− pr)
qh
pn
.

Proof. Remark that:

1. �ere is no statistical di�erence between the output distribution of the two oracles that are

accepted by the rejection sampling (that is so that z1 or z2 do not lie in the setRk−α).

2. On the one hand, the distribution of outputs of S0 that are rejected by the rejection sampling

is by construction the distribution of (ay1 + y2) where (a, c,y1,y2) is uniformly sampled

inR×Dnα ×R2
k , conditioned by the event s1c+ y1 /∈ Rk−α or s2c+ y2 /∈ Rk−α. Such a

vector along with a and c constitutes a sample of the distribution of R-DCK by de�nition.

3. On the other hand the distribution of outputs of S1 that are rejected by the rejection sam-

pling is by construction the uniform distribution overR conditioned by the event the sim-

ulation by the random oracle is perfect and remains coherent. Indeed a�er yielding the

commitment r, the random oracleH is programmed so thatH(r,m) = c without checking

whether the value r has been already set. But the adversary calls at most qh times the oracle

H , at most qh values can be set by the adversary. Hence this distribution is at distance at

most:

qh

{
Pr

r
$←−R

[r already set by H]

}
= qhp

−n

from uniform.

�erefore the advantage of A in distinguishing the two oracle S0 and S1 satis�es by the law of

total probability:∣∣∣∣Pr [A wins G1]−Pr [A wins G0]

∣∣∣∣
≤ εR-DCK(T) + (1− pr)qh

{
Pr

r
$←−R

[r already set by H]

}

≤ εR-DCK(T) + (1− pr)qhmax
r′∈R

{
Pr

r
$←−R

[r = r′]

}
= εR-DCK(T) + (1− pr)

qh
pn
,

where εR-DCK(T) is an upper bound on the R-DCK-advantage of any adversary running in time

T (and hence negligible under the R-DCK hardness assumption for polynomial T). ut

Lemma 13 (Computational indistinguishability of G1 and G2). Let A be an adversary of

time complexity bounded by T , having access to either the signing algorithms S1 or S2, and limited

to perform at most qh queries to the H oracle (this count includes the calls that can be performed

while calling the signing oracles too). Its computational advantage of distinguishing the two oracles

of hybrid G1 or G2 is bounded by

pr
qh

(2k + 1)n
.

39

Proof. First remark that the parameter chosen for the Bernoulli is exactly the probability of

ge�ing a valid signature when signing honestly with the secret key that is pr =
(
1− 2α

2k+1

)2n
.

Let us then perform a case analysis, depending on the conditioning by the value taken by the

variable B.

– Case B = 0: Let consider the output distribution of S2, conditioned by the event B = 0
(that is only considering the executions where the Bernoulli variable B is set to 0). �is

distribution is by construction statistically indistinguishable from the distribution of the

game S1 conditioned by the rejection of the computed signature.

– CaseB = 1: Let now consider the output distribution of S2, conditioned by the eventB = 1.

�is distribution is then by construction statistically indistinguishable from the distribution

of the game S1 conditioned this time by the acceptance of the computed signature as long

as the the simulation by the random oracle is perfect and remains coherent. Indeed once

z1, z2 are sampled, the value of the commitment is set a posteriori to ful�ll the equation

r = az1 + z2 − tc and the random oracle is programmed to the answer to H(az1 + z2 −
tc,m) = H(ay1 + y2,m). If the value for (ay1 + y2,m) was already set, we abort the

simulation. �us one needs to evaluate the probability that ay1 +y2 = r for a given r ∈ R
when y1 and y2 are sampled uniformly and independently inRk:

max
r = au + v
u, v ∈ Rk

Pr
y1,y2

[ay1 + y2 = r] ≤ max
r∈R

Pr
y1,y2

[ay1 + y2 = r]

= max
r∈R

Pr
y1,y2

[y2 = r− ay1]

= max
r′∈R

Pr
y2

[y2 = r′]

= (2k + 1)−n.

We eventually conclude by the law of total probability:∣∣∣∣Pr [A wins G2]− Pr [A wins G1]

∣∣∣∣ ≤ (1− 2α

2k + 1

)2n
qh

(2k + 1)n
.

ut

Lemma 14 (Computational indistinguishability of G2 and G3). Let A be an adversary of

time complexity bounded by T , having access to either the signing algorithms S2 or S3,. Its compu-

tational advantage of distinguishing the two oracles of hybrid G2 or G3 is bounded by

2εDCK(T)

where εDCK(T) is an upper bound on the DCK(T)-advantage of any adversary running in time T .

Proof. �e di�erence between the games G2 and G3 lies in the distribution from which the keys

s1, s2 are sampled. In G2 they are drawn under U(R1), whereas in G3 they are drawn under

the Ũγ . Hence the advantage of the adversaryA to distinguish these two games when knowing

the values of (a,as1 + s2 is bounded by the advantage it has to distinguish (a,as1 + s2) from

the uniform distribution, that is its advantage in solving either the DCK problem or the S-DCK

problem. Since using Proposition 3 the advantage in solving the DCK problem is smaller than

the advantage in solving the S-DCK problem, its advantage in distinguishing the two games is

bounded by 2εDCK(T). ut

40

Lemma 15 (Applying the Forking Lemma to construct a distinguisher for DCK). Sup-

pose there exists a forger F , that succeeds in forging with probability δ, who is given the veri�-

cation key and access to the signing oracle S3 in the Hybrid G3, is limited to at most qh queries

to the random oracle H . �en there exists a probabilistic algorithm A of same time complex-

ity as F , which, for a given pair (a, t) ∈ R2
is able to decide whether (a, t) follows the R-

DCK distribution or is made from two independent random samples, with probability at least

1
32

(
1−

(
n+1
2γ+1

)2)
(δ − 3n)

(
δ−εα
qh
− 3n

) (
1− (

√
p(2γ + 1))−2n − n(2γ)−1 − nγ−2

)
Aγ , where

Aγ = sup
x

[
1− 2e−x − 4

√
2(2k + γ

√
16x/3)

√
x+ logn/p

]
.

Proof. Let us take a, t0 ∈ R the instance of the DCK problem we want to solve.

Let us generate s1, s2 ∈ R2
γ and the corresponding t = as1 + s2 public key (note that this

key is constructed with the challenge element a).

We now choose random coins φ and ψ which will be used respectively by the forger and

the signer. We also pick the values that will correspond to the responses of the random oracle

c1, . . . , cqh . Let de�ne the algorithm a:

input: (a, t, φ, ψ, c1, . . . , cqh)
output: A couple message, signature (m, z1, z2, c)

1. Initialize a with a, t, φ.

2. Run F .

3. Each time F requires a signature, a intercepts the call and runs S2, using the random coins

ψ as entropy to produce a signature.

– During this process, some queries to the random oracleH are performed (by the signa-

ture oracle or by F itself).

– In such cases the response of H will be the �rst ci in the list (c1, . . . , cqh) that has not

been used yet.

4. As soon as F �nishes running return the forged signature (m, z1, z2, c).

Let εα = 3−α be the probability of sampling a particular element uniformly at random in

the range of the random oracle H .

�e routine a outputs, with probability δ, a messagem and its signature (z1, z2, c), which by

construction satis�es: c = H((az1 + z2 − tc),m). If the random oracle H was neither queried

nor programmed with the speci�c input r = az1+z2, then, by choosing at random in the range

of H , the forger has probability exactly εα of generating c satisfying the relation c = H(r,m).
�is implies that with probability 1− εα, c belongs to the list (ci)i. Hence the probability that a
succeeds in forging a signature (z1, z2, c) so that c is one of the (ci)i is at least δ− εα. Suppose

from now on that this is case, and without loss of generality we can assume that this returned

values is c1, by simply reordering the (ci)i beforehand. Following the execution �ow of the

procedure a, one can remark that two cases can occur:

[R1] Either c was programmed directly by F to be the output of H on a certain pair (r′,m′) =
(az′1+z′2,m

′) when signing the messagem′. Since (z1, z2, c) is a valid signature returned

by the forger, we have:

H(az1 + z2 − tc,m) = H(az′1 + z′2 − tc,m′).

41

Ifm 6= m′ or az1+z2−tc 6= az′1+z′2−tc then the forger has found a preimage of c1 for

H . �is event occurs with probability exactly εα. One can thus suppose that az1+z2−tc =
az′1 + z′2 − tc with probability 1− εα. Hence by se�ing u1 = z1 − z′1 and u2 = z′2 − z2,

we have found two elements of norm bounded by 2k such that au1 + u2 = 0, which are

non-zero otherwise (z1, z2,m) would be exactly the same as the signature (z′1, z
′
2,m).

[R2] Either c1 results from a call to the signature oracle, we store the forged signature z1, z2, c1.

�en replay the algorithm a with the same coins but di�erent and fresh c′1, . . . , c
′
qh . By the

general Forking Lemma [6] the probability so that c′1 6= c′1 and the forger uses the random

oracle response c1 (and the query associated to it) in the forgery is at least

(δ − εα)
(
δ − εα
qh

− εα
)
.

Eventually, we can produce two signatures for the message m, denoted by (z1, z2, c) and

(z′1, z
′
2, c
′), so that the commitment coincides:

a(z1 − s1c) + z2 − s2c = a(z′1 − s1c
′) + z′2 − s2c

′,

that is:

a(z1 − s1c− z′1 + s1c
′) + (z2 − s2c− z′2 + s2c

′) = 0.

Let us set {
u1 = z1 − s1c− z′1 + s1c

′

u2 = z2 − s2c− z′2 + s2c
′ .

�e probability of having (u1,u2) 6= (0,0) is at least

1

2
pc

(
1−

(
n+ 1

2γ + 1

)2
)

with

pc = 1− (
√
p(2γ + 1))−2n − n(2γ)−1 − nγ−2 ≈ 1− n(2γ)−1.

Indeed, by Lemma 11, with probability at least pc there exists another pair (s′1, s
′
2) such that

as1 + s2 = as′1 + s′2. Suppose that (u1,u2) = (0,0). �en playing the previous argument

(and so using the same randomness) with the s′i instead of the si yields another pair (u′1,u
′
2).

Suppose that this pair is also (0, 0). �en we have:

s1(c− c′) = s′1(c− c′)

s2(c− c′) = s′2(c− c′),

meaning that s1R = s2R = s′1R = s′2R = (c − c′)R 6= {0},R (indeed, the si can not

be all zero by construction and if (c − c′) is invertible then we would have s1 = s′1 and

s2 = s′2). Hence this event can occurs with probability dominated by

Pr
s1,s2

[
s1R = s2R = (c− c′)R

]
≤ max
I6={0},R

Pr
s1,s2

[s1R = s2R = I]

≤ max
I6={0},R

Pr
s∼Ũγ

[sR = I]2

≤ max
I6={0},R

(
n(2γ)−1 + nγ−2 + Pr

s∈U(Rγ)
[sR ∈ I]

)2

=

(
n(2γ)−1 + nγ−2 + max

I6={0},R
Pr

s∈U(Rγ)
[sR ∈ I]

)2

42

Hence to estimate maxI6={0},R Prs [sR ∈ I], we fall back to describing the ideals of R.

Classicaly, since R ∼= (Z[X]/(Xn + 1))/p its ideals are in (antitone) bijection with the

divisors of Xn + 1 mod p. Let then P be a divisor of Xn + 1 mod p, then the ideal

generated by P in R has cardinality pn−degP and the probability that s ∈ (P) is at most

(2γ+1)− degP
. Indeed, the probability of this event is equal to Pr [s = 0 mod P], yielding

the announced majoration since the reduction mod P acts as a bijection when �xing the

n− degP coe�cients of highest degrees.

�erefore we get the estimate:

max
I6={0},R

Pr
s
[sR ∈ I] ≤ max

d∈{1,...,n−1}
(2γ + 1)−d

= max
d∈{1,...,n−1}

(2γ + 1)−2d = (2γ + 1)−1.

�e probability of ge�ing once again zero elements ui is then dominated by ((n+1)(2γ +
1))−2. �e forger F does not get access to these functionally equivalent secret keys. Since

it does not use them for simulating the signing oracle, we will get a non-zero answer with

probability at least 1/2, since each key has an equal probability of being chosen by unifor-

mity of the generation.

We then need to estimate the norm of the vectors u1,u2, which with a certain probability is

not too big. Indeed, remark that Proposition 2 and union bound ensures that with probability

at least
1
16 , the elements s1c, s′1c, s2c and s′2c have their `∞-norm bounded by γ

√
4α
3 ,

meaning that ‖ui‖∞ ≤ 2k + γ
√

16α
3 , for i = 1, 2.

All in all, in the case [E1], we can �nd a couple (u1,u2) 6= (0,0) of norm bounded by 2k
such that au1 + u2 = 0 with probability at least (1− εα) anf in the case [E2], we can �nd two

u1,u2 of norm bounded by 2k + γ
√

16α
3 such that au1 + u2 = 0 with probability at least

p0 =
1

2
pc

(
1−

(
n+ 1

2γ + 1

)2
)
(δ − εα)

(
δ − εα
qh

− εα
)
< 1− εα

Hence, in any cases, with probability at least p0 one can �nd such vectors. Now allows us

to get a non negligible advantage in solving the DCK instance, acting as a trapdoor for this

problem. Indeed, for the trial (a, t0), given as input, two cases can occur:

1. Either the element t ofR is taken uniformly at random, the probability of u1t to be inside

the `∞ ball of radius 2τ is crudely upper bounded by (4τ−1)/(p−1) (indeed, at most pn−1

elements can vanish under the action of x 7→ u1x, and for the remaining ones, at most

(4τ − 1)/(p− 1) elements per space of dimesion 1 minus zero intersects the ball).

2. Either it is of the form (a,as3 + s4), the multiplication of the la�er pair by u1 yields:

(au1,au1s3 + u1s4) = (au1,−u2s3 + u1s4).

We can notice that−u2s3+u1s4 has in�nity norm bounded by 2τ = 2
√
2‖ui‖2

√
x+ log n

with probability at least 1− 2e−x, for a free parameter x which will be used for later opti-

mization. To see this, remark that

Pr [u1s2 + u2s1 ≥ 2τ] ≤ Pr [u1s2 ≥ τ] + Pr [u2s1 ≥ τ]

43

by the union bound. But we have for i = 1, 2, j = 1, 2 and s > 0:

Pr [uisj ≥ τ] ≤ Pr

[
n∨
k=1

{[uisj]k ≥ τ}

]
Coe�cient extraction

≤ nPr [[uisj]1 ≥ τ] Union bound

≤ nPr [s[uisj]1 ≥ sτ] Positivity of s

≤ nPr [exp (s[uisj]1)) ≥ exp(sτ)] Monotony of exponential

≤ nE [exp (s[uisj]1)]

exp(sτ)
Markov’s Inequality

≤ exp

(
s2‖ui‖22

2
− sτ + log n

)
Proposition 1

≤ exp

(
− τ2

2‖ui‖2
+ log n

)
= exp

(
− (
√
2‖ui‖2

√
x+ log n)2

2‖ui‖2
+ log n

)
= exp (−(x+ log n) + log n)

= exp(−x)

�erefore the distinguisher constructed by testing if the element tu1 lies inside the ball of

radius 2τ has advantage

Ax = sup
x

[
1− 2e−x − 4

√
2(2k + γ

√
16x/3)

√
x+ log n/p

]
.

We de�ne the algorithm A to be the algorithm that �nd the trapdoors elements u1,u2 from the

forgery of a valid signature by F and which answer the DCK challenge with the distinguisher

above-mentioned. Its running time is at most twice the running time of the forger F and its

success probability is at least Axp0, by construction. ut

Remark 6 (Practical considerations). Assuming the computational hardness of both DCK and R-

DCK problems, choosing γ = 1664 ≈ 210.70 (resp. γ = 2504) for the small (resp. large) security

parameters set ensures a security level of 100 (resp 256) bits.

A.3 r-GLP signature scheme with commitment

�is part describes the GLP signature scheme combined with the commitment procedure intro-

duced in [5]. �e public commitment key ck =

(
ck1,1 ck1,2 ck1,3
ck2,1 ck2,2 ck2,3

)
is sampled uniformly at

random in R2×3
during the key derivation algorithm. �e parameter k′ is set accordingly to

the estimation of [5], so greater than
2q
3 . In this variation of the original signature scheme, the

value r is hidden through the linear commitment. Hence, even if an a�acker learn the commi�ed

value f1, f2 by side channel, the computational indistinguishability of the commitment with an

uniform distribution ensures that no secret-dependant information could possibly be extracted

44

from this trace. To formalize this intuition we prove like in the la�er section that one round of

the signature scheme with return values even in case of a rejection is EUF-CMA. We now sketch

the security proof of this modi�ed scheme.

Algorithm 24: GLP signature with com-

mitment

Data:m, pk, sk, ck
Result: Signature σ

1 y1,y2
$←− Rk

2 u1,u2,u3
$←− Rk′

3 r← ay1 + y2

4 (f1, f2)← (u1,u2,u3) · ckT + (0, r)
5 c← H(f1, f2,m)
6 z1← s1c+ y1

7 z2← s2c+ y2

8 if z1 or z2 /∈ Rk−α then

9 return (f1, f2)
10 end

11 return σ = (z1, z2,u1,u2,u3, f1, f2, c)

Algorithm 25: GLP veri�cation with com-

mitment

Data:m, σ, pk, ck
1 if z1 and z2 ∈ Rk−α and

c = H((u1,u2,u3) · ckT + (0,az1 +
z2 − tc),m) then

2 accept

3 else

4 reject

5 end

Game G0. �is game is the security game of the existential unforgeability under chosen mes-

sage a�ack, where the adversary can ask at most qh hash queries to the H oracle and qs
sign queries to the Signing oracle S0 given in Algorithm 26.

Notice that the signature includes the random values u1,u2,u3 to open the commitment

(f1, f2) of r.

Game G1. �is game is the same as in G0 except that the Signing oracle S1 is given in Algo-

rithm 27. �e di�erence in the signing algorithms is that in the case of a rejection at line

6: the commi�ed variables f1, f2 are freshly re-sampled, independently from any previous

values. �is game is computationally indistinguishable from G0 under the hiding property

of the commitment scheme (see [5]) by choice of the commitment parameters. �is prop-

erty relying on the hardness of the R-LWE problem. Notice that the previous argument

remains valid as long as the simulation by the random oracle is perfect and remains coher-

ent. Indeed a�er yielding the commitment r, the random oracle H is programmed so that

H(y1,y2,m) = c without checking whether the value y1,y2 has been already set. If an ad-

versaryA running in time T calls H qh times, at most qh values can be set by the adversary

and we get: ∣∣∣∣Pr [A wins G1]− Pr [A wins G0]

∣∣∣∣ ≤ εRLWE(T) + (1− pr)
qh
p2n

,

where εRLWE(T) is an upper bound on the advantage of any adversary running in time T to

solve the R-LWE problem. All in all G0 and G1 are thus computationally indistinguishable

under the hardness Ring-LWE assumption.

45

Algorithm 26: Signature oracle S0

Data:m, pk = (a, t), sk = (s1, s2)
Result: Signature σ

1 y1,y2
$←− Rk

2 u1,u2,u3
$←− Rk′

3 r← ay1 + y2

4 (f1, f2)← (u1,u2,u3) · ckT + (0, r)
5 c← H(f1, f2,m)
6 z1← s1c+ y1

7 z2← s2c+ y2

8 if z1 or z2 /∈ Rk−α then

9 return (f1, f2)
10 end

11 return σ = (z1, z2,u1,u2,u3, f1, f2, c)

Algorithm 27: Signature oracle S1

Data:m, pk = (a, t), sk = (s1, s2)
Result: Signature σ

1 y1,y2
$←− Rk

2 u1,u2,u3
$←− Rk′

3 (f1, f2)← (u1,u2,u3) · ckT + (0, r)
4 c← H(f1, f2,m)
5 z1← s1c+ y1

6 z2← s2c+ y2

7 if z1 or z2 /∈ Rk−α then

8 f1, f2
$←− R

9 Program H(f1, f2,m) = c
10 return (f1, f2)

11 end

12 return σ = (z1, z2,u1,u2,u3, f1, f2, c)

Game G2. In this game, we replace the Signing oracle by S2 described in Algorithm 28 and take

as input a trial of the DCKp,n problem. input: (a, t) trials of DCKp,n

1. (s1, s2)← R2
γ

2. (m∗, σ∗)← AH,S2(a, t)
3. return 1 if (Verify(a, t,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned by the oracle

S1) 0 otherwise.

�e di�erence between G1 and G2 lies in that the la�er don’t use the secret key anymore.

Indeed the returned value of the random oracleH is now chosen at random from the setDnα,

and that the acceptance in the rejection sampling is simulated by a Bernoulli trial of param-

eter pr , that is the exact probability of ge�ing a valid signature when signing honestly with

the secret key. In the case of simulating an accepted signature, z1, z2 are generated at ran-

dom in the space of accepted signature (i.e. Rk−α). �en r is recomputed from z1, z2, t, c
to satisfy the equation r = az1 + z2 − tc = ay1 + y2. From this value a commitment

is constructed as in the real signature and the random oracle is programmed accordingly.

Exactly like in appendix A.2, we can prove that the games G1 and G2 are then also com-

putationally indistinguishable by the same hybrid argument involving an additional game

where the key parameters are stretched. Eventually the exact same forking lemma-based

argument concludes the proof by showing how to reduce the adversary to a distinguisher

for the DCK problem, concluding the proof.

Under the hardness of both the DCK and R-LWE problems, the advantage of the a�acker

is therefore negligible. We can indeed show by indistinguishability that the advantage of the at-

tacker in the �rst game is also negligible and then prove the EUF-CMA property of the signature

scheme.

B Masked r-GLP with commitment

�e masking of the key generation remains the same with the additional generation of the public

commitment key ck. For the signature, the commitment gadget (algorithm 30) is added. It is a

46

Algorithm 28: Signature oracle S2

Data:m, pk = (a, t)
Result: Signature σ

1 u1,u2,u3
$←− R′k

2 c
$←− Dnα

3 B
$←− Bernoulli

((
1− 2α

2k+1

)2n)
4 if B = 1 then

5 f1, f2
$←− R

6 Program H(f1, f2,m) = c
7 return (f1, f2)

8 end

9 else

10 z1
$←− Rk−α

11 z2
$←− Rk−α

12 r← az1 + z2 − tc

13 (f1, f2)← (u1,u2,u3) · ckT + (0, r)

14 end

15 Program H(f1, f2,m) = c
16 return σ = (z1, z2,u1,u2,u3, f1, f2, c)

matrix multiplication as showed in algorithm 30. �e composition is then more complex and

have more gadgets. �e composition is in Figure 7. �e whole signature is described in Algorithm

29.

47

H
1

Fu
llA

dd

Fu
llA

dd

D
G

D
G

D
G

D
G

D
G

R
S

C
o

m
m

Fu
llA

dd

Fu
llA

dd

H
2

H
a
sh

H
2

H
1

H
1

H
2

H
2

H
2

Fu
llA

dd

Fu
llA

dd

Fu
llA

dd

a

(s
1
,i
) 0
≤
i
≤
d

(s
2
,i
) 0
≤
i
≤
d

m

(u
1
,i
) 0
≤
i
≤
d (u

2
,i
) 0
≤
i
≤
d

(u
3
,i
) 0
≤
i
≤
d

(u
3
,i
) 0
≤
i
≤
d

(u
2
,i
) 0
≤
i
≤
d

(u
1
,i
) 0
≤
i
≤
d

c
k

(y
1
,i
) 0
≤
i
≤
d

(y
2
,i
) 0
≤
i
≤
d

(u
1
,i
) 0
≤
i
≤
d

(u
2
,i
) 0
≤
i
≤
d (u
3
,i
) 0
≤
i
≤
d

(r
i
) 0
≤
i
≤
d

(f
1
,i
) 0
≤
i
≤
d

(f
2
,i
) 0
≤
i
≤
d

f 1 f 2

(z
1
,i
) 0
≤
i
≤
d

(z
2
,i
) 0
≤
i
≤
d

R
e
j
S
p

c

z
1

z
2u
1

u
2

u
3

(z
1
,i
) 0
≤
i
≤
d

(z
2
,i
) 0
≤
i
≤
d

(y
1
,i
) 0
≤
i
≤
d

(y
2
,i
) 0
≤
i
≤
d

(z
1
,i
) 0
≤
i
≤
d

(z
2
,i
) 0
≤
i
≤
d

c

F
i
g
.
7
.
C

o
m

p
o

s
i
t
i
o

n
o

f
c
o

m
m

i
t
m

e
n

t
G

L
P

S
i
g

n

48

Algorithm 29: GLP masked signature with commitment

Data:m, pk = (a, t), sk = (s1,i)0≤i≤d, (s2,i)0≤i≤d, ck
Result: Signature σ

1 (y1,i)0≤i≤d ← DG(k, d)
2 (y2,i)0≤i≤d ← DG(k, d)
3 (u1,i)0≤i≤d ← DG(k, d)
4 (u2,i)0≤i≤d ← DG(k, d)
5 (u3,i)0≤i≤d ← DG(k, d)
6 (ri)0≤i≤d ← H1(a, (y1,i)0≤i≤d, (y2,i)0≤i≤d)
7 ((f1,i)0≤i≤d, (f2,i)0≤i≤d)← Comm((u1,i)0≤i≤d, (u2,i)0≤i≤d, (u3,i)0≤i≤d, (ri)0≤i≤d, ck)
8 f1 ← FullAdd((f1,i)0≤i≤d)
9 f2 ← FullAdd((f2,i)0≤i≤d)

10 c← hash(f1, f2,m)
11 (z1,i)0≤i≤d ←H1

(c, (s1,i)0≤i≤d, (y1,i)0≤i≤d)
12 (z2,i)0≤i≤d ←H1

(c, (s2,i)0≤i≤d, (y2,i)0≤i≤d)
13 RejSp← RS((z1,i)0≤i≤d, (z2,i)0≤i≤d, k − α)
14 (z1,i)0≤i≤d ← H2(RejSp, (z1,i)0≤i≤d)
15 (z2,i)0≤i≤d ← H2(RejSp, (z2,i)0≤i≤d)
16 (u1,i)0≤i≤d ← H2(RejSp, (u1,i)0≤i≤d)
17 (u2,i)0≤i≤d ← H2(RejSp, (u2,i)0≤i≤d)
18 (u3,i)0≤i≤d ← H2(RejSp, (u3,i)0≤i≤d)
19 z1 ←FullAdd((z1,i)0≤i≤d)
20 z2 ←FullAdd((z2,i)0≤i≤d)
21 u1 ←FullAdd((u1,i)0≤i≤d)
22 u2 ←FullAdd((u2,i)0≤i≤d)
23 u3 ←FullAdd((u3,i)0≤i≤d)
24 return σ = (z1, z2,u1,u2,u3, c)

Lemma 16. �e gadget Comm is NI-secure.

Proof. Let δ ≤ d be the number of observations made by the a�acker. �e proof consists in �lling

an empty set I with at most δ indices in [0, d] such that the distribution of any tuple (v1, ...,vδ)
of intermediate variables of the block can be perfectly simulated from the sensitive values

(u1,i,u2,i,u3,i, ri)i∈I (1)

For each observationvh, (h ∈ [0, δ]), we add the corresponding index i in I. A�er having built

I, every intermediate value vh is simulated by the direct computation fromu1,i,u2,i,u3,i, ri and

the public value ck.

At the end, any set of δ ≤ d intermediate variables can be perfectly simulated with at most

δ shares of each sensitive input. �is is enough to prove that Comm is d-NI secure.

ut

49

Algorithm 30: Comm

Data: (u1,i)0≤i≤d, (u2,i)0≤i≤d, (u3,i)0≤i≤d, (ri)0≤i≤d,ck
Result: (f1,i)0≤i≤d, (f2,i)0≤i≤d

1 ((f1,i)0≤i≤d, (f2,i)0≤i≤d)← 02d

2 for i = 0, ..., d+ 1 do

3 f1,i ← ck1,1u1,i + ck1,2u2,i + ck1,3u3,i

4 f2,i ← ck2,1u1,i + ck2,2u2,i + ck2,3u3,i + ri
5 end

6 return (f1,i)0≤i≤d, (f2,i)0≤i≤d

�eorem 6. masked-glp sign with commitment is still d-NIo secure.

Proof. From Lemmas 6,7, 9 and 16 Algorithms DG, RS, H1
, H2

and Comm are all d-NI. From

Lemma 8, FullAdd is d-NIo secure.

Let us assume that an a�acker has access to δ ≤ d observations on the whole signature

scheme. �en, we want to prove that all these δ observations can be perfectly simulated with at

most δ shares of each secret among y1, y2, s1,s2,u1,u2 and u3 and the public values. With such

a result, the signature scheme is then secure in the d-probing model since no set of at most d
observations would give information on the secret values.

In the following, we consider this distribution of the a�acker’s δ observations:

– δ1 (resp. δ2, δ3, δ4, δ5) on the instance of DG that produces shares of y1 (resp. y2, u1, u2,

u3)

– δ6 on H1
,

– δ7 on Comm,

– δ8 (resp. δ9) on FullAdd of f1 (resp. f2),

– δ10 (resp. δ11) on H1
which produces z1 (resp. z2),

– δ12 on the instance of RS,

– δ13 (resp. δ14,δ15,δ16,δ17) on H2
applied on z1 (resp. z2,u1,u2,u3),

– δ18 (resp. δ19,δ20,δ21,δ22) on FullAdd of z1 (resp. z2, u1,u2,u3)

Some other observations can be made on theHash function, their number won’t ma�er during

the proof. Finally, we have

∑22
i=1 δi ≤

∑22
i=1 +δHash ≤ δ.

Now, we build the proof from right to le� as follows.

�e �ve last FullAdd blocks are d-NI secure, then all the observations performed during the

execution of FullAdd on z1 (resp. z2, u1,u2,u3) can be perfectly simulated with at most δ18 (resp.

δ19,δ20,δ21,δ22) shares of z1 (resp. z2, u1,u2,u3).

H2
is d-NI secure, then all the observations from the call of H2

on z1 (resp. z2, u1,u2,u3)

can be perfectly simulated with δ13 + δ18 (resp. δ14 + δ19, δ15 + δ20, δ16 + δ21, δ17 + δ22) shares

of the sensitive input z1 (resp. z2, u1, u2, u3).

RS is d-NI secure and do not return any sensitive element, then all the observations per-

formed in gadget RS can be perfectly simulated with at most δ12 shares of z1 and z2. So, a�er

H1
, the observations can be simulated with δ12 + (δ13 + δ18) shares of z1 and δ12 + (δ14 + δ19)

shares of z2.

50

H1
is d-NI secure as well, thus all the observations from the call of H1

on y1 can be perfectly

simulated with δ10+δ12+δ13+δ18 ≤ δ shares ofy1 and s1. Respectively, ony2, the observations

can be perfectly simulated from δ11 + δ12 + δ14 + δ19 ≤ δ shares of y2 and s2.

Both �rst le� FullAdd gadget are d-NIo secure and do not return any sensitive element, then

all the observations performed from this gadget can be perfectly simulated with at most δ8 (resp.

δ9) shares of f1 (resp. f2).

�e gadget Comm is also d-NI secure, then all the observations performed a�er this gadget

can be perfectly simulated with δ7 + δ8 + δ9 shares of u1, u2, u3 and r.

�e le� H1
gadget is d-NI secure, thus all the observations from its call can be perfectly

simulated with at most δ6 + δ7 + δ8 + δ9 shares of each one of the inputs y1 and y2.

DG is also d-NI secure, thus we need to ensure that the number of reported observations

does not exceed δ for y1, y2, u1,u2 and u3.

On one hand, at the end of DG for y1, y2, the simulation relies on (δ6 + δ7 + δ8 + δ9) + (δ10 +
δ12 + δ13 + δ18) ≤ δ shares of y1 and (δ6 + δ7 + δ8 + δ9) + (δ11 + δ12 + δ14 + δ19) ≤ δ shares

of y2. With the additional δ1 (resp. δ2) observations performed on the �rst (resp. the second)

instance of DG, the number of observations remains below δ.

On the other hand, at the end of DG for u1, u2 and u2, the simulation relies on (δ8+δ9)+(δ15+
δ20) ≤ δ shares of u1, (δ8 + δ9) + (δ16 + δ21) ≤ δ shares of u2 and (δ8 + δ9) + (δ17 + δ22) ≤ δ
shares of u3. With the additional δ3 (resp. δ4, δ5) observations performed on the DG on u1 (resp.

u2,u2), the number of observations remains below δ which is su�cient to ensure security of the

whole scheme in the d-probing model.

ut

51

	Masking the GLP Lattice-Based Signature Scheme at Any Order

