Skip to main content

FEA Evaluation of Ring-Shaped Soft-Actuators for a Stomach Robot

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 5 (RiTA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 751))

Abstract

This paper evaluates four designs of circumferential pneumatic soft-actuator and shows its application to a soft stomach robot. The testing of the design is based on a finite element analysis of geometrical displacement and related pressurisation. In a biological human stomach, the antral contraction wave deformation is represented in a ring-shaped structure. The inspiration of such behavior of deformation leads to a proposal of a ring-shaped soft actuator. The proposed actuator includes a pneumatic system with multi-chambers and multi-layers to produce a deformation similar to that in the stomach organ. There are four proposed chamber designs: semicircular, cylindrical, ellipsoidal and semirectangular. The body of the actuator is made of soft material (silicone) with a high stress/strain relationship in order to exhibit large deformation behavior. In this article, the evaluation of four possible shapes of pneumatic chambers of the circumferential soft-actuator is examined and compared by Finite Element Analysis to simulate the displacement of each soft actuator. Two different methods are used in the experiments: (1) we applied the same pressure to all actuators and compare the displacements, (2) we applied different pressures to obtain the maximum pressure in each actuator before distortion and then examine the maximum displacement that can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  2. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. USA 108(51), 20400–20403 (2011). Cited By (since 1996):51

    Article  Google Scholar 

  3. Lin, H.T., Leisk, G.G., Trimmer, B.: Goqbot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2) (2011). Cited By (since 1996):24

    Article  Google Scholar 

  4. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012)

    Article  Google Scholar 

  5. Trimmer, B.A.: New challenges in biorobotics: incorporating soft tissue into control systems. Appl. Bionics Biomech. 5(3), 119–126 (2008). Cited By (since 1996):6

    Article  Google Scholar 

  6. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013). Cited By (since 1996):4

    Article  Google Scholar 

  7. Cianchetti, M., Calisti, M., Margheri, L., Kuba, M., Laschi, C.: Bioinspired locomotion and grasping in water: the soft eight-arm octopus robot. Bioinspir. Biomim. 10(3), 035003 (2015)

    Article  Google Scholar 

  8. Dirven, S., Stommel, M., Hashem, R., Xu, W.: Medically-inspired approaches for the analysis of soft-robotic motion control. In: 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), pp. 370–375

    Google Scholar 

  9. Dirven, S., Chen, F., Xu, W., Bronlund, J.E., Allen, J., Cheng, L.K.: Design and characterization of a peristaltic actuator inspired by esophageal swallowing. IEEE/ASME Trans. Mech. 19(4), 1234–1242 (2014)

    Article  Google Scholar 

  10. Condino, S., Harada, K., Pak, N., Piccigallo, M., Menciassi, A., Dario, P.: Stomach simulator for analysis and validation of surgical endoluminal robots. Appl. Bionics Biomech. 8(2), 267–277 (2011)

    Article  Google Scholar 

  11. Trimmer, B.A., Lin, H.T., Baryshyan, A., Leisk, G.G., Kaplan, D.L.: Towards a biomorphic soft robot: design constraints and solutions. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 599–605 (2012). Cited By (since 1996):4

    Google Scholar 

  12. Cheng, L.K., Komuro, R., Austin, T.M., Buist, M.L., Pullan, A.J.: Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World J. Gastroenterol. 13(9), 1378 (2007)

    Article  Google Scholar 

  13. Benshitrit, R.C., Levi, C.S., Tal, S.L., Shimoni, E., Lesmes, U.: Development of oral food-grade delivery systems: current knowledge and future challenges. Food Funct. 3(1), 10–21 (2012)

    Article  Google Scholar 

  14. Cheng, L.K., O’Grady, G., Du, P., Egbuji, J.U., Windsor, J.A., Pullan, A.J.: Gastrointestinal system. Wiley Interdiscip. Rev.: Syst. Biol. Med. 2(1), 65–79 (2010)

    Google Scholar 

  15. Ehrlein, H.J., Schemann, M.: Gastrointestinal Motility

    Google Scholar 

  16. Schulze, K.: Imaging and modelling of digestion in the stomach and the duodenum. Neurogastroenterol. Motil. 18(3), 172–183 (2006)

    Article  Google Scholar 

  17. Keet, A.D.: Infantile hypertrophic pyloric stenosis. In: The Pyloric Sphincteric Cylinder in Health and Disease, p. 107. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  18. Kwiatek, M.A., Steingoetter, A., Pal, A., Menne, D., Brasseur, J.G., Hebbard, G.S., Boesiger, P., Thumshirn, M., Fried, M., Schwizer, W.: Quantification of distal antral contractile motility in healthy human stomach with magnetic resonance imaging. J. Magnet. Reson. Imaging 24(5), 1101–1109 (2006)

    Article  Google Scholar 

  19. Hashem, R., Xu, W., Stommel, M., Cheng, L.: Conceptualisation and specification of a biologically-inspired, soft-bodied gastric robot. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6, Nov 2016

    Google Scholar 

  20. Dirven, S., Chen, F., Xu, W., Bronlund, J.E., Allen, J., Cheng, L.K.: Design and characterization of a peristaltic actuator inspired by esophageal swallowing (2013)

    Google Scholar 

  21. Dang, Y., Cheng, L.K., Stommel, M., Xu, W.: Technical requirements and conceptualization of a soft pneumatic actuator inspired by human gastric motility. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6, Nov 2016

    Google Scholar 

  22. Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. (2015)

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper was funded by New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashem, R., Xu, W., Stommel, M., Cheng, L.K. (2019). FEA Evaluation of Ring-Shaped Soft-Actuators for a Stomach Robot. In: Kim, JH., et al. Robot Intelligence Technology and Applications 5. RiTA 2017. Advances in Intelligent Systems and Computing, vol 751. Springer, Cham. https://doi.org/10.1007/978-3-319-78452-6_38

Download citation

Publish with us

Policies and ethics