Skip to main content

Non-orthogonal Homothetic Range Partial-Sum Query on Integer Grids

[Extended Abstract]

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10823))

Included in the following conference series:

  • 654 Accesses

Abstract

Algorithms for range partial sum query on high dimensional integer grids typically focus on orthogonal ranges, which by definition demands fixed right triangles between all adjacent boundary edges. We extend the algorithm to solve 2D homothetic triangular range queries in \(\langle O(N \alpha (N)), O(\alpha ^2 (N)) \rangle \) (\(\langle \)preprocessing bound, query bound\(\rangle \) of both time and space since they are identical.), where N is the total number of grid points and \(\alpha (\cdot )\) is a functional equivalence of the inverse Ackermann function. This asymmetric bound improves over the existing bound for orthogonal ranges. By the property of homotheticity, we mean that the angles between any two adjacent boundaries are arbitrarily fixed constants. The technique and bounds of our work can be extended to even higher dimensional grids.

Y. Tang—Supported in part by the Open Funding (No. CARCH201606).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For convenience, we use the term “grid point” and “point” interchangeably in the rest of paper.

  2. 2.

    In the RAM model, we can locate a proper memory cell in a recursive divide-and-conquer tree by finding the Lowest Common Ancestor (LCA) of the end vertices i of the query range. The LCA problem can in turn be solved by a \(\pm 1\) RMQ algorithm with linear preprocessing time and O(1) query time [6, 7].

  3. 3.

    “Hyper-zoid” is a trapezoidal analogue in a \((d+1)\)-dimensional grid, where \(d > 1\). The \((d+1)\)-dimensional grid composes of a d-dimensional spatial grid plus a 1-dimensional temporal axis.

  4. 4.

    We define \(f^* (n) = 0\) if \(n \le 1\), otherwise \(f^* (n) = 1 + f^*(f(n))\).

References

  1. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2), 221–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yao, A.C.: Space-time tradeoff for answering range queries (extended abstract). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, pp. 128–136. ACM, New York (1982)

    Google Scholar 

  3. Yao, A.C.C.: On the complexity of maintaining partial sums. SIAM J. Comput. 14(2), 277–288 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays. In: Proceedings of the Fifth Annual Symposium on Computational Geometry, SCG 1989, pp. 131–139. ACM, New York (1989)

    Google Scholar 

  5. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line. Int. J. Comput. Geom. Appl. 1(1), 33–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_29

    Chapter  Google Scholar 

  7. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms 57, 2005 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The Pochoir stencil compiler. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2011, pp. 117–128. ACM, New York (2011)

    Google Scholar 

  9. Seidel, R.: Understanding the inverse Ackermann function. In: Invited Talk: 22nd European Workshop on Computational Geometry, Delphi, Greece (2006)

    Google Scholar 

  10. Fredman, M.L.: The inherent complexity of dynamic data structures which accommodate range queries. In: FOCS, pp. 191–199 (1980)

    Google Scholar 

  11. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73437-6_29

    Chapter  Google Scholar 

  12. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006). https://doi.org/10.1007/11780441_5

    Chapter  Google Scholar 

  14. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimensional arrays. In: SODA, pp. 150–160 (2010)

    Google Scholar 

  15. Poon, C.K.: Optimal range max datacube for fixed dimensions. Int. J. Found. Comput. Sci. 15(5), 773–790 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.: Two dimensional range minimum queries and Fibonacci lattices. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_20

    Chapter  Google Scholar 

  17. Brodal, G.S., Davoodi, P., Srinivasa Rao, S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32241-9_34

    Chapter  Google Scholar 

  19. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39(1), 1–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Kan, H. (2018). Non-orthogonal Homothetic Range Partial-Sum Query on Integer Grids. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics