Abstract
In this article, we study the maximum distance-d independent set problem, a variant of the maximum independent set problem, on unit disk graphs. We first show that the problem is NP-hard. Next, we propose a polynomial-time constant-factor approximation algorithm and a PTAS for the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The length of a smallest cycle.
- 2.
By independent we mean for any \(p_i \in H_i \cap P\) and \(p_j \in H_j \cap P\), \(p_i\) and \(p_j\) are distance-d independent and also, \(OPT^i \cap OPT^j = \emptyset \).
- 3.
If there are two components of \(G_\chi \) having distance less than d in G, then we can view them as a single component.
References
Agnarsson, G., Damaschke, P., Halldórsson, M.M.: Powers of geometric intersection graphs and dispersion algorithms. Discrete Appl. Math. 132(1), 3–16 (2003)
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM (JACM) 45(3), 501–555 (1998)
Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)
Chang, G.J., Nemhauser, G.L.: The \(k\)-domination and \(k\)-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods 5(3), 332–345 (1984)
Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)
Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–446 (2015)
Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)
Eto, H., Guo, F., Miyano, E.: Distance-\(d\) independent set problems for bipartite and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014)
Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_20
Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-3 independent set problem on cubic graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 228–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_18
Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, vol. 29. W. H. Freeman, New York (2002)
Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63. ACM (1974)
Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972)
Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 160–169. Society for Industrial and Applied Mathematics (1995)
Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)
Hsu, W.L., Nemhauser, G.L.: Algorithms for minimum covering by cliques and maximum clique in claw-free perfect graphs. Discrete Math. 37(2–3), 181–191 (1981)
Jallu, R.K., Das, G.K.: Improved algorithm for maximum independent set on unit disk graph. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 212–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_18
Marathe, M.V., Breu, H., Hunt, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25(2), 59–68 (1995)
Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7_16
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980)
Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few” minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16
Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete Appl. Math. 35(2), 167–170 (1992)
Nandy, S.C., Pandit, S., Roy, S.: Faster approximation for maximum independent set on unit disk graph. Inf. Process. Lett. 127, 58–61 (2017)
Nieberg, T., Hurink, J., Kern, W.: A robust PTAS for maximum weight independent sets in unit disk graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 214–221. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_18
Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Math. Univ. Carol. 15(2), 307–309 (1974)
Acknowledgements
The authors would like to thank the anonymous referees for their valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jena, S.K., Jallu, R.K., Das, G.K., Nandy, S.C. (2018). The Maximum Distance-d Independent Set Problem on Unit Disk Graphs. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-78455-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78454-0
Online ISBN: 978-3-319-78455-7
eBook Packages: Computer ScienceComputer Science (R0)