Skip to main content

Memory-Effective Modifications of PSE Approximation

  • Conference paper
  • First Online:
Non-Integer Order Calculus and its Applications (RRNR 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 496))

Included in the following conference series:

  • 543 Accesses

Abstract

The paper is intented to propose new, memory effective modifications of known PSE approximant describing a basic fractional order element \(s^\alpha \). The proposed approximants are based on geometric interpretation of Fractional Order Backward Difference/Sum. Results of numerical tests point that all the proposed approximants for the same, short memory length assure the better accuracy in the sense of MSE cost function that PSE approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  2. Al Aloui M.A.: Dicretization methods of fractional parallel PID controllers. In: Proceedings of 6th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2009, pp. 327–330 (2009)

    Google Scholar 

  3. Caponetto, R., Dongola, G., Fortuna, l., Petras, I.: Fractional order systems. In: Modeling and Control Applications, World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing (2010)

    Google Scholar 

  4. Chen Y.Q., Moore K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 49(3), 363–367 (2002)

    Google Scholar 

  5. Das, S.: Functional fractional calculus for system identification and controls. Springer, Berlin (2008)

    Google Scholar 

  6. Das, S., Pan, I.: Intelligent Fractional Order Systems and Control - An Introduction. Springer (2013)

    Google Scholar 

  7. Dorcak, L., Petras, I., Kostial, I., Terpak, J.: Fractional order state space models. In: Proceedings of International Carpathian Control Conference, ICCC 2002, Malenovice, Czech Republic, 27–30 May 2002, pp. 193–198 (2002)

    Google Scholar 

  8. Douambi, A., Charef, A., Besancon, A.V.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comp. Sci. 17(4), 455–462 (2007)

    Google Scholar 

  9. Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  10. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Heidelberg (2011)

    Google Scholar 

  11. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)

    MATH  Google Scholar 

  12. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007)

    Google Scholar 

  13. Mitkowski, W., Oprzedkiewicz, K.: Optimal sample time estimation for the finite-dimensional discrete dynamic compensator implemented at the “soft PLC” platform. In: Korytowski, A., Mitkowski, W., Szymkat, M. (eds.) 23rd IFIP TC 7 Conference on System Modelling and Optimization: Cracow, Poland, 23–27 July 2007: Book of Abstracts, pp. 77–78. AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Krakow (2007). ISBN 978-83-88309-0

    Google Scholar 

  14. Mozyrska, D., Pawluszewicz, E.: Fractional discrete-time linear control systems with initialisation. Int. J. Control 85, 213–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oprzedkiewicz, K., Gawin, E.: Non integer order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016). https://www1degruyter-1com-1atoz.wbg2.bg.agh.edu.pl/downloadpdf/j/acsc.2016.26.issue2/acsc-2016-0015/acsc-2016-0015.xml

  16. Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Parameter identification for non integer order, state space models of heat plant In: 21th International Conference on Methods and Models in Automation and Robotics: 29 August–01 September 2016, Miedzyzdroje, Poland, pp. 184–188 (2016) ISBN 978-1-5090-1866-6, ISBN 978-837518-791-5

    Google Scholar 

  17. Ostalczyk, P.: Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22(3), 533–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ostalczyk, P.: Discrete Fractional Calculus: Applications in Control and Image Processing, Series in Computer Vision, vol. 4. World Scientific Publishing, River Edge (2016)

    Google Scholar 

  19. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21, 69–81 (2011)

    Article  MATH  Google Scholar 

  20. Petras I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod2.m

  21. Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)

    Google Scholar 

  22. Petras, I.: Realization of fractional order controller based on PLC and its utilization to temperature control, Transfer inovci 14/2009 (2009)

    Google Scholar 

  23. Petras, I.: Tuning and implementation methods for fractional-order controllers. Fract. Calcul. Appl. Anal. 15(2) (2012)

    Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  25. Siami, M., Tavazoei, M.S., Haeri, M.: Stability preservation analysis in direct discretization of fractional order transfer functions. Signal Process. 9, 508–512 (2011)

    Article  MATH  Google Scholar 

  26. Sierociuk, D., Macias, M.: New recursive approximation of fractional order derivative and its application to control. In: Proceedings of 17th International Carpathian Control Conference (ICCC), Tatranska Lomnica, 29 May 2016– 1 June 2016, pp. 673–678 (2016)

    Google Scholar 

  27. Stanislawski, R., Latawiec, K.J.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: new necessary and sufficient conditions for asymptotic stability. Bull. Pol. Acad. Sci. Tech. Sci. 61(2), 353–361 (2013)

    Google Scholar 

  28. Stanislawski, R., Latawiec, K., Lukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015, 10 p, Article ID 512104 (2015). https://doi.org/10.1155/2015/512104

  29. Valerio, D., da Costa, J.S.: Tuning of fractional PID controllers with Ziegler Nichols-type rules. Signal Process. 86, 2771–2784 (2006)

    Article  MATH  Google Scholar 

  30. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calcul. Appl. Anal. 3(3), 231–248 (2000)

    Google Scholar 

  31. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator-integrator. J. Franklin Inst. 340, 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The paper was sponsored by AGH University grant no 11.11.120.815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzedkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzedkiewicz, K. (2019). Memory-Effective Modifications of PSE Approximation. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds) Non-Integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-319-78458-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78458-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78457-1

  • Online ISBN: 978-3-319-78458-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics