Abstract
The use of time series for integrating ordinary differential equations to model oscillatory chemical phenomena has shown benefits in terms of accuracy and stability. In this work, we suggest to adapt also the model in order to improve the matching of the numerical solution with the time series of experimental data. The resulting model is a system of stochastic differential equations. The stochastic nature depends on physical considerations and the noise relies on an arbitrary function which is empirically chosen. The integration is carried out through stochastic methods which integrate the deterministic part by using one-step methods and approximate the stochastic term by employing Monte Carlo simulations. Some numerical experiments will be provided to show the effectiveness of this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tyson, J.J.: What everyone should know about the Belousov-Zhabotinsky reaction. In: Levin, S.A. (ed.) Frontiers in Mathematical Biology. LNMB, vol. 100, pp. 569–587. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-50124-1_33
Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1st edn. Oxford University Press, Oxford (1998)
Murray, J.D.: Mathematical Biology. Springer, New York (2004)
D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F.: On the employ of time series in the numerical treatment of differential equations modeling oscillatory phenomena. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 179–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_16
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Gillespie, D.T., Hellander, A., Petzold, L.R.: Perspective: stochastic algorithms for chemical kinetics. J. Chem. Phys. 138, 170901 (2013)
Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Liveri, M.L.T.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4), 322–326 (2009)
Belousov, B.P.: An oscillating reaction and its mechanism. Sborn. Referat. Radiat. Med. (Collection of Abstracts on Radiation Medicine), Medgiz 145 (1959)
Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley-Interscience, New York (1985)
Zhabotinsky, A.M.: Periodic processes of the oxidation of malonic acid in solution (study of the kinetics of Belousov’s reaction). Biofizika 9, 306–311 (1964)
Zhabotinsky, A.M., Rossi, F.: A brief tale on how chemical oscillations became popular an interview with Anatol Zhabotinsky. Int. J. Des. Nat. Ecodyn. 1(4), 323–326 (2006)
Sciascia, L., Rossi, F., Sbriziolo, C., Liveri, M.L.T., Varsalona, R.: Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration. Phys. Chem. Chem. Phys. 12(37), 11674–11682 (2010)
Marchettini, N., Budroni, M.A., Rossi, F., Masia, M., Liveri, M.L.T., Rustici, M.: Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)
Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037109 (2012)
Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)
Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)
Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. Mech. 27(4), 247–325 (2002)
Souza, T.P., Perez-Mercader, J.: Entrapment in giant polymersomes of an inorganic oscillatory chemical reaction and resulting chemo-mechanical coupling. Chem. Commun. 50(64), 8970–8973 (2014)
Tamate, R., Ueki, T., Shibayama, M., Yoshida, R.: Self-oscillating vesicles: spontaneous cyclic structural changes of synthetic diblock copolymers. Angew. Chem. Int. Ed. 53(42), 11248–11252 (2014)
Epstein, I.R., Xu, B.: Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11(4), 312–319 (2016)
Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)
Torbensen, K., Rossi, F., Ristori, S., Abou-Hassan, A.: Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)
Torbensen, K., Ristori, S., Rossi, F., Abou-Hassan, A.: Tuning the chemical communication of oscillating microdroplets by means of membrane composition. J. Phys. Chem. C 121(24), 13256–13264 (2017)
Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)
Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)
Tyson, J.J.: A quantitative account of oscillations, bistability, and traveling waves in the Belousov-Zhabotinskii reaction. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 93–144. Wiley-Interscience, New York (1985)
Tyson, J.: Scaling and reducing the Field-Körös-Noyes mechanism of the Belousov-Zhabotinskii reaction. J. Phys. Chem. 81(86), 3006–3012 (1982)
Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)
Cardone, A., D’Ambrosio, R., Paternoster, B.: Exponentially fitted IMEX methods for advection-diffusion problems. J. Comput. Appl. Math. 316, 100–108 (2017)
Cardone, A., D’Ambrosio, R., Paternoster, B.: High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Numer. Math. 114C, 18–29 (2017)
D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74(5), 1029–1042 (2017)
D’Ambrosio, R., Paternoster, B.: Numerical solution of reaction-diffusion systems of \(\lambda \) - \(\omega \) type by trigonometrically fitted methods. J. Comput. Appl. Math. 294, 436–445 (2016)
Ixaru, L.G., Paternoster, B.: A conditionally p-stable fourth-order exponential-fitting method for \(y^{\prime \prime }= f(x, y)\). J. Comput. Appl. Math. 106(1), 87–98 (1999)
Ixaru, L.G., Berghe, G.V.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)
Voorsluijs, V., Kevrekidisc, I.G., De Deckerab, Y.: Nonlinear behavior and fluctuation-induced dynamics in the photosensitive Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19, 22528–22537 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F. (2018). Stochastic Numerical Models of Oscillatory Phenomena. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-78658-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78657-5
Online ISBN: 978-3-319-78658-2
eBook Packages: Computer ScienceComputer Science (R0)