Skip to main content

Density Estimators for Positive-Unlabeled Learning

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2017)

Abstract

Positive-Unlabeled (PU) learning works by considering a set of positive samples, and a (usually larger) set of unlabeled ones. This challenging setting requires algorithms to cleverly exploit dependencies hidden in the unlabeled data in order to build models able to accurately discriminate between positive and negative samples. We propose to exploit probabilistic generative models to characterize the distribution of the positive samples, and to label as reliable negative samples those that are in the lowest density regions with respect to the positive ones. The overall framework is flexible enough to be applied to many domains by leveraging tools provided by years of research from the probabilistic generative model community. Results on several benchmark datasets show the performance and flexibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paper is an extended version of [2] presented at the International Workshop NFMCP held in conjunction with ECML/PKDD 2017.

  2. 2.

    http://archive.ics.uci.edu/ml/.

  3. 3.

    The datasets and settings used in [18] were kindly provided by Dino Ienco.

  4. 4.

    http://www.bnlearn.com/.

  5. 5.

    The same set of experiments have been conducted using the likelihood as scoring function, leading to overfitted models with an overall result worst than that obtained using the K2 score.

  6. 6.

    http://libra.cs.uoregon.edu/.

  7. 7.

    For this stage only, categorical data is one-hot encoded.

  8. 8.

    http://scikit-learn.org/.

References

  1. Balasubramanian, V.: MDL, Bayesian inference, and the geometry of the space of probability distributions. In: Grünwald, P.D., Myung, I.J., Pitt, M.A. (eds.) Advances in Minimum Description Length: Theory and Applications, pp. 81–98. MIT Press, Cambridge (2005)

    Google Scholar 

  2. Basile, T., Mauro, N.D., Esposito, F., Ferilli, S., Vergari, A.: Generative probabilistic models for positive-unlabeled learning. In: Workshop on NFMCP Held with ECML/PKDD (2017)

    Google Scholar 

  3. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep learning: a review and new perspectives. CoRR abs/1206.5538 (2012)

    Google Scholar 

  4. Calvo, B., Larraaga, P., Lozano, J.A.: Learning bayesian classifiers from positive and unlabeled examples. Pattern Recogn. Lett. 28(16), 2375–2384 (2007)

    Article  Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)

    Article  Google Scholar 

  6. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theor. 14, 462–467 (1968)

    Article  MATH  Google Scholar 

  7. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  8. De Comité, F., Denis, F., Gilleron, R., Letouzey, F.: Positive and unlabeled examples help learning. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720, pp. 219–230. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46769-6_18

    Chapter  Google Scholar 

  9. Di Mauro, N., Vergari, A., Basile, T.M.A., Esposito, F.: Fast and accurate density estimation with extremely randomized cutset networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 203–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_13

    Chapter  Google Scholar 

  10. Di Mauro, N., Vergari, A., Basile, T.M.A.: Learning Bayesian random cutset forests. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 122–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25252-0_13

    Chapter  Google Scholar 

  11. Di Mauro, N., Vergari, A., Esposito, F.: Learning accurate cutset networks by exploiting decomposability. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 221–232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_17

    Chapter  Google Scholar 

  12. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: KDD, pp. 213–220 (2008)

    Google Scholar 

  13. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–3), 131–163 (1997)

    Article  MATH  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  15. Hempstalk, K., Frank, E., Witten, I.H.: One-class classification by combining density and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 505–519. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9_51

    Chapter  Google Scholar 

  16. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoi, C.H., Chan, C.H., Huang, K., Lyu, M.R., King, I.: Biased support vector machine for relevance feedback in image retrieval. In: IJCNN, pp. 3189–3194 (2004)

    Google Scholar 

  18. Ienco, D., Pensa, R.G.: Positive and unlabeled learning in categorical data. Neurocomputing 196, 113–124 (2016)

    Article  Google Scholar 

  19. Ienco, D., Pensa, R.G., Meo, R.: From context to distance: learning dissimilarity for categorical data clustering. TKDD 6(1), 1:1–1:25 (2012)

    Article  Google Scholar 

  20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  21. Li, H., Chen, Z., Liu, B., Wei, X., Shao, J.: Spotting fake reviews via collective positive-unlabeled learning. In: ICDM, pp. 899–904 (2014)

    Google Scholar 

  22. Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive and unlabeled examples. In: ICDM, pp. 179–188 (2003)

    Google Scholar 

  23. Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text documents. In: ICML, pp. 387–394 (2002)

    Google Scholar 

  24. Lowd, D., Rooshenas, A.: The Libra toolkit for probabilistic models. CoRR abs/1504.00110 (2015)

    Google Scholar 

  25. Meila, M., Jordan, M.I.: Learning with mixtures of trees. JMLR 1, 1–48 (2000)

    MathSciNet  MATH  Google Scholar 

  26. du Plessis, M.C., Sugiyama, M.: Semi-supervised learning of class balance under class-prior change by distribution matching. Neural Netw. 50, 110–119 (2014)

    Article  MATH  Google Scholar 

  27. Riahi, F., Schulte, O., Li, Q.: A proposal for statistical outlier detection in relational structures. In: SRAI AAAI Workshop (2014)

    Google Scholar 

  28. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  29. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  30. Vergari, A., Di Mauro, N., Esposito, F.: Visualizing and understanding sum-product networks. CoRR abs/1608.08266 (2016)

    Google Scholar 

  31. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthening sum-product network structure learning. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 343–358. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_21

    Chapter  Google Scholar 

  32. Xu, J., Shelton, C.R.: Intrusion detection using continuous time Bayesian networks. J. Artif. Int. Res. 39(1), 745–774 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Yang, E., Baker, Y., Ravikumar, P., Allen, G., Liu, Z.: Mixed graphical models via exponential families. In: AISTATS, pp. 1042–1050 (2014)

    Google Scholar 

  34. Yang, P., Li, X.L., Mei, J.P., Kwoh, C.K., Ng, S.K.: Positive-unlabeled learning for disease gene identification. Bioinformatics 28, 2640–2647 (2012)

    Article  Google Scholar 

  35. Zhao, Y., Kong, X., Philip, S.Y.: Positive and unlabeled learning for graph classification. In: ICDM, pp. 962–971 (2011)

    Google Scholar 

  36. Zhou, J., Pan, S., Mao, Q., Tsang, I.: Multi-view positive and unlabeled learning. In: ACML, pp. 555–570 (2012)

    Google Scholar 

  37. Zhou, K., Gui-Rong, X., Yang, Q., Yu, Y.: Learning with positive and unlabeled examples using topic-sensitive PLSA. TKDE 22(1), 46–58 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Di Mauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basile, T.M.A., Di Mauro, N., Esposito, F., Ferilli, S., Vergari, A. (2018). Density Estimators for Positive-Unlabeled Learning. In: Appice, A., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2017. Lecture Notes in Computer Science(), vol 10785. Springer, Cham. https://doi.org/10.1007/978-3-319-78680-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78680-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78679-7

  • Online ISBN: 978-3-319-78680-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics