Skip to main content

Are Radiosensitive and Regular Response Cells Homogeneous in Their Correlations Between Copy Number State and Surviving Fraction After Irradiation?

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10813))

Included in the following conference series:

Abstract

Biomarkers of radiosensitivity are currently a widespread research interest due to a demand for a sufficient method of prediction of cell response to ionizing radiation. Copy Number State (CNS) alterations may significantly influence individual radiosensitivity. However, their possible impact has not been entirely investigated yet. The purpose of this research was to select markers for which CNS change is significantly associated with the surviving fraction after irradiation with 2 Gy dose (SF2), which is a commonly used measure of cellular radiosensitivity. Moreover, a new strategy of combining qualitative and quantitative approaches is proposed as the identification of potential biomarkers is based not only on the overall SF2 and CNS correlation, but also on differences of it between radiosensitive and regular response cell strains. Four patterns of association are considered and functional analysis and Gene Ontology enrichment analysis of obtained sets of genomic positions are performed. Proposed strategy provides a comprehensive insight into the strength and direction of association between CNS and cellular radiosensitivity. Obtained results suggest that commonly used approach of group comparison based on testing two samples against each other is not sufficient in terms of radiosensitivity since this is not a discrete variable and division into sensitive, normal and resistant individuals is always stipulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ree, A.H., Redalen, K.R.: Personalized radiotherapy: concepts, biomarkers and trial design. Br. J. Radiol. 88(1051), 20150009 (2015). https://doi.org/10.1259/bjr.20150009

    Article  Google Scholar 

  2. Alymani, N.A., Smith, M.D., Williams, D.J., Petty, R.D.: Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation. Eur. J. Cancer 46, 869–879 (2010). https://doi.org/10.1016/j.ejca.2010.01.001

    Article  Google Scholar 

  3. Yard, B.D., et al.: A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat. Commun. 7, 11428 (2016). https://doi.org/10.1038/ncomms11428

    Article  Google Scholar 

  4. Story, M., Ding, L.H., Brock, W.A., Ang, K.K., Alsbeih, G., Minna, J., Park, S., Das, A.: Defining molecular and cellular responses after low and high linear energy transfer radiations to develop biomarkers of carcinogenic risk or therapeutic outcome. Health Phys. 103(5), 596–606 (2012). https://doi.org/10.1097/HP.0b013e3182692085

    Article  Google Scholar 

  5. Thermo Fisher Scientific Inc.: Chromosome Analysis Suite 3.1 (ChAS 3.1) User Guide. http://tools.thermofisher.com/content/sfs/manuals/chas3_1_userguide.pdf

  6. Tucker, S.L., Turesson, I., Thames, H.D.: Evidence for individual differences in the radiosensitivity of human skin. Eur. J. Cancer 11, 1783–1791 (1992). https://doi.org/10.1016/0959-8049(92)90004-L

    Article  Google Scholar 

  7. Geara, F.B., Peters, L.J., Ang, K.K., Wike, J.L., Brock, W.A.: Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 27, 1173–1179 (1993). https://doi.org/10.1016/0360-3016(93)90540-C

    Article  Google Scholar 

  8. Johansen, J., Bentzen, S.M., Overgaard, J., Overgaard, M.: Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy. Int. J. Radiat. Biol. 66, 407–412 (1994). https://doi.org/10.1080/09553009414551361

    Article  Google Scholar 

  9. Johansen, J., Bentzen, S.M., Overgaard, J., Overgaard, M.: Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy. Radiother. Oncol. 40, 101–109 (1996). https://doi.org/10.1016/0167-8140(96)01777-X

    Article  Google Scholar 

  10. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale (2013)

    MATH  Google Scholar 

  11. Durinck, S., Spellman, P.T., Birney, E., Huber, W.: Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4(8), 1184–1191 (2009). https://doi.org/10.1038/nprot.2009.97

    Article  Google Scholar 

  12. Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., Huber, W.: BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21(16), 3439–3440 (2005). https://doi.org/10.1093/bioinformatics/bti525

    Article  Google Scholar 

  13. Falcon, S., Gentleman, R.: Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257–258 (2007). https://doi.org/10.1093/bioinformatics/btl567

    Article  Google Scholar 

  14. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The Gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000). https://doi.org/10.1038/75556

    Article  Google Scholar 

  15. The Gene Ontology Consortium: Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 45(D1), D331–D338 (2017). https://doi.org/10.1093/nar/gkw1108

    Article  Google Scholar 

  16. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995). https://doi.org/10.2307/2346101

    MathSciNet  MATH  Google Scholar 

  17. Zakhvataev, V.E.: Possible scenarios of the influence of low-dose ionizing radiation on neural functioning. Med. Hypotheses 85(6), 723–735 (2015). https://doi.org/10.1016/j.mehy.2015.10.020

    Article  Google Scholar 

  18. Katsura, M., et al.: Effects of chronic low-dose radiation on human neural progenitor cells. Sci. Rep. 6, 20027 (2016). https://doi.org/10.1038/srep20027

    Article  Google Scholar 

  19. Tanaka, T., Munshi, A., Brooks, C., Liu, J., Hobbs, M.L., Meyn, R.E.: Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity. Clin. Cancer Res. 14(4), 1266–1273 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1606

    Article  Google Scholar 

  20. Lee, H.J., et al.: Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Res. 25(2), 225–236 (2015). https://doi.org/10.1038/cr.2015.8

    Article  Google Scholar 

  21. Cengel, K.A., McKenna, W.G.: Molecular targets for altering radiosensitivity: lessons from Ras as a pre-clinical and clinical model. Crit. Rev. Oncol. Hematol. 55(2), 103–116 (2005). https://doi.org/10.1016/j.critrevonc.2005.02.001

    Article  Google Scholar 

  22. Pattje, W.J., Schuuring, E., Mastik, M.F., Slagter-Menkema, L., Schrijvers, M.L., Alessi, S., van der Laan, B.F., Roodenburg, J.L., Langendijk, J.A., van der Wal, J.E.: The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer. Br. J. Cancer 102(12), 1778–1785 (2010). https://doi.org/10.1038/sj.bjc.6605707

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by SUT Grant Number BKM/508/RAU1/2017/25 (JT), SUT Grant Number BK–204/RAU1/2017/9 (JP) and NSTIP-KACST 11-BIO1429-20 (RAC# 2120 003) (NAL, SBJ, SM, GA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Tobiasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tobiasz, J., Al-Harbi, N., Judia, S.B., Majid, S., Alsbeih, G., Polanska, J. (2018). Are Radiosensitive and Regular Response Cells Homogeneous in Their Correlations Between Copy Number State and Surviving Fraction After Irradiation?. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics