Abstract
Document representation is an important stage to ensure the indexation of biomedical document. The ordinary way to represent a text is a bag of words BoW, This Representation suffers from the lack of sense in resulting representations ignoring all semantics that reside in the original text; instead of, the Conceptualization using background knowledge enriches document representation models. Three strategies can be used in order to realize the conceptualization task: Adding Concept, Partial Conceptualization, and Complete Conceptualization. While searching polysemic term corresponding senses in semantic resources, multiple matches are detected then introduce some ambiguities in the final document representation, three strategies for Disambiguation can be used: First Concept, All Concepts and Context-Based. SenseRelate is a well-known Context-Based algorithm, which uses a fixed window size and taking into consideration the distance weight on how far the terms in the context are from the target word. This may impact negatively on the yielded concepts or senses, we propose a simple modified version of SenseRelate algorithm namely NoDistanceSenseRelate, which simply ignore the distance that is the terms in the context will have the same distance weight. In order to evaluate the effect of the conceptualization strategies and Disambiguation strategies in the indexing process, in this study, several experiments have been conducted using OHSUMED corpus on a biomedical information retrieval system. The obtained results using OHSUMED corpus show that the Context-Based methods (SenseRelate and NoDistanceSenseRelate) outperform the others ones when applying Adding Concept Conceptualization strategy results using Biomedical Information retrieval system. The obtained results prove the evidence of adding the sense of concepts to the Term Representation in the IR process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 241–257. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36456-0_24
Dinh, D., Tamine, L.: Sense-based biomedical indexing and retrieval. In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 24–35. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13881-2_3
Elberrichi, Z., Taibi, M., Belaggoun, A.: Multilingual Medical Documents Classification Based on MesH Domain Ontology. CoRR abs/1206.4883 (2012)
Amine, A., Elberrichi, Z., Simonet, M.: Evaluation of text clustering methods using WordNet. Int. Arab J. Inf. Technol. 7, 351 (2010)
Guyot, J., Radhoum, S., Falquet, G.: Ontology-based multilingual information retrieval. In: CLEF (2005)
Litvak, M., Last, M., Kisilevich, S.: Improving classification of multilingual web documents using domain ontologies. In: KDO05, The Second International Workshop on Knowledge Discovery and Ontologies, Porto, Portugal, 7 October 2006
Song, M.-H., Lim, S-Yeon, Park, S.-B., Kang, D.-J., Lee, S.-J.: An automatic approach to classify web documents using a domain ontology. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 666–671. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_107
Sanderson, M.: Retrieving with good sense. Inf. Retr. 2(1), 49–69 (2000)
Stokoe, C., Oakes, M.P., Tait, J.: Word sense disambiguation in information retrieval revisited. In: Proceedings of the 26th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 159–166 (2003)
Kim, S.B., Seo, H.C., Rim, H.C.: Information retrieval using word senses: root sense tagging approach. In: Proceedings of the 27th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258–265 (2004)
Fang, H.: A re-examination of query expansion using lexical resources. In: Proceedings of the 46th Annual Meeting of the Association of Computational Linguistics: Human Language Technologies, pp. 139–147 (2008)
Agirre, E., Arregi, X., Otegi, A.: Document expansion based on WordNet for robust IR. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 9–17 (2010)
Majdoubi, J., Loukil, H., Tmar, M., Gargouri, F.: An approach based on language modeling for improving biomedical information retrieval. Int. J. Knowl.-based Intell. Eng. Syst. 16(4), 235–246 (2012)
Albitar, S., Fournier, S., Espinasse, B.: The impact of conceptualization on text classification. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 326–339. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35063-4_24
McInnes, B.T., Pedersen, T.: Evaluating measures of semantic similarity and relatedness to disambiguate terms in biomedical text. J. Biomed. Inform. 46(6), 1116–1124 (2013)
Rais, M., Lachkar, A.: Evaluation of disambiguation strategies on biomedical text categorization. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 790–801. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31744-1_68
Rais, M., Lachkar, A.: Biomedical word sense disambiguation context-based: improvement of SenseRelate method. In: IEEE Explore - 2016 International Conference on Information Technology for Organizations Development (IT4OD) (2016)
Dittenbach, M.: Scoring and Ranking Techniques - TF-IDF Term Weighting and Cosine Similarity (2010). http://www.ir-facility.org/scoring-and-ranking-techniques-tf-idf-term-weighting-and-cosine-similarity
What does TF-IDF mean? How to Compute. Information Retrieval and Text Mining http://www.tfidf.com/
Hersh, W., et al.: OHSUMED: an interactive retrieval evaluation and new large test collection for research. In: 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 192–201. New York, Inc., Dublin (1994)
Voorhees, E.M., Harman, D.K.: TREC: “Experiment and Evaluation in Information Retrieval”. MIT Press, Cambridge (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Rais, M., Lachkar, A. (2018). An Empirical Study of Word Sense Disambiguation for Biomedical Information Retrieval System. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-78723-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78722-0
Online ISBN: 978-3-319-78723-7
eBook Packages: Computer ScienceComputer Science (R0)