Skip to main content

On the Use of Betweenness Centrality for Selection of Plausible Trajectories in Qualitative Biological Regulatory Networks

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10813))

Included in the following conference series:

  • 1716 Accesses

Abstract

Qualitative modeling approach is widely used to study the behavior of Biological Regulatory Networks. The approach uses directed graphs also called as , to represent system dynamics. As the number of genes increase, the complexity of stategraph increases exponentially. The identification of important trajectories and isolation of more probable dynamics from less significant ones constitutes an important problem in qualitative modeling of biological networks. In this work, we implement a parallel approach for identification of important dynamics in qualitative models. Our implementation uses the concept of . For parallelization, we used a Java based library MPJ Express to implement our approach. We evaluate the performance of our implementation on well known case study of bacteriophage lambda. We demonstrate the effectiveness of our implementation by selecting important trajectories and correlating with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, J., Bernot, G., Comet, J.P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. Complexus 3(4), 231–251 (2006). https://doi.org/10.1159/000110010

    Article  Google Scholar 

  2. Ahmad, J., Niazi, U., Mansoor, S., Siddique, U., Bibby, J.: Formal modeling and analysis of the MAL-associated biological regulatory network: insight into cerebral malaria 7(3) (2012)

    Google Scholar 

  3. Aslam, B., Ahmad, J., Ali, A., Zafar Paracha, R., Tareen, S.H.K., Niazi, U., Saeed, T.: On the modelling and analysis of the regulatory network of dengue virus pathogenesis and clearance. Comput. Biol. Chem. 53, 277–291 (2014). http://linkinghub.elsevier.com/retrieve/pii/S1476927114001261

  4. Atkinson, D.E.: Biological feedback control at the molecular level. Science 150(3698), 851–857 (1965)

    Article  Google Scholar 

  5. Baker, M., Carpenter, B., Shafi, A.: MPJ express: towards thread safe Java HPC. In: 2006 IEEE International Conference on Cluster Computing, pp. 1–10. IEEE (2006)

    Google Scholar 

  6. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  7. Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O.: Semantics of biological regulatory networks. Electron. Notes Theor. Comput. Sci. 180(3), 3–14 (2007)

    Article  Google Scholar 

  8. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending thomas asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  9. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  10. Juncker, B., Schreiber, F.: Analysis of Biological Networks. Wiley, Hoboken (2008)

    Book  Google Scholar 

  11. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

    Article  Google Scholar 

  12. Khalis, Z., Comet, J.P., Richard, A., Bernot, G.: The smbionet method for discovering models of gene regulatory networks. Genes Genomes Genomics 3(1), 15–22 (2009)

    Google Scholar 

  13. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009)

    Article  Google Scholar 

  14. Richard, A., Comet, J.P., Bernot, G.: Formal methods for modeling biological regulatory networks. Mod. Formal Methods Appl. 5, 83–122 (2006)

    Article  Google Scholar 

  15. Richard, A., Comet, J.-P., Bernot, G.: Formal methods for modeling biological regulatory networks. In: Gabbar, H.A. (ed.) Modern Formal Methods and Applications, pp. 83–122. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4223-X_5

    Chapter  Google Scholar 

  16. Saeed, M.T., Ahmad, J., Kanwal, S., Holowatyj, A.N., Sheikh, I.A., Paracha, R.Z., Shafi, A., Siddiqa, A., Bibi, Z., Khan, M., et al.: Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression. PeerJ 4, e2348 (2016)

    Article  Google Scholar 

  17. Saeed, T., Ahmad, J.: A parallel approach for accelerated parameter identification of gene regulatory networks

    Google Scholar 

  18. Tareen, S.H.K., Ahmad, J., Roux, O.: Parametric linear hybrid automata for complex environmental systems modeling. Front. Environ. Sci. 3, 47 (2015)

    Article  Google Scholar 

  19. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks–II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297 (1995)

    MATH  Google Scholar 

  20. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)

    Article  Google Scholar 

  21. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73(4), 631–656 (1978)

    Article  MathSciNet  Google Scholar 

  22. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153(1), 1–23 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saeed, M.T., Ahmad, J., Ali, A. (2018). On the Use of Betweenness Centrality for Selection of Plausible Trajectories in Qualitative Biological Regulatory Networks. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics