Skip to main content

Detection Methods of Static Microscopic Objects

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

The article deals with selected methods of automated detection of microscopic objects in video sequences obtained by high-speed cinematography and light microscopy. The objects of interest are represented by cilia of airways and also artefact generating objects (gas bubbles and erythrocytes). The main idea of this work is to create complex diagnostic tool for evaluation of ciliated epithelium in airways, where the ratio between moving and static cilia helps to search proper diagnosis (confirmation of PCD – primary ciliary dyskinesia). Methods for automated segmentation of static cilia creates a big challenge for image analysis against the dynamic ones due to character and parameters of obtained images. This work is supported by medical specialists from Jessenius Faculty of Medicine in Martin (Slovakia) and proposed tools would fill the gap in the diagnostics in the field of respirology in Slovakia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russ, J.C.: The Image Processing Handbook, 6th edn. CRC Press, Boca Raton (2011). ISBN 978-1-4398-4063-4

    Book  MATH  Google Scholar 

  2. Trojan, S., et al.: Lékařská fyziologie, 4th edn. Grada Publishing, Praha (2003). ISBN 80-247-0512-5

    Google Scholar 

  3. Nečas, E., Šulc, K., Vokurka, M.: Patologická fyziologie orgánových systémů. Nakladatelství Karolinum, Praha (2006). ISBN 80-246-0675-5

    Google Scholar 

  4. Silbernagl, S., Despopoulos, A.: Atlas fyzilogie člověka, 8th edn. Grada Publishing, Praha (2016). ISBN 978-80-247-4271-7

    Google Scholar 

  5. Pei-Gee, P.H. (ed.): Image Segmantation. InTech, Rijeka (2014). ISBN 978-953-307-228-9

    Google Scholar 

  6. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29, 100–132 (1985). ISSN 0734-189X

    Article  Google Scholar 

  7. Frankovsky, P., Ostertag, O., Trebuna, F., Ostertagova, E., Kelemen, M.: Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity. Appl. Opt. 55(18), 4856–4864 (2016). ISSN 1539-4522

    Article  Google Scholar 

  8. Parker, J.R.: Algorithms for Image Processing and Computer Vision, 2nd edn. Wiley Publishing, Hoboken (2010). ISBN 978-0-470-64385-3

    Google Scholar 

  9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2008). ISBN 978-0131687288

    Google Scholar 

  10. Umbaugh, S.E.: Computer Imaging: Digital Image Analysis and Processing. CRC Press, Boca Raton (2000). ISBN 0-8493-2919-1

    MATH  Google Scholar 

  11. Mikulova, Z., Duchon, F., Dekan, M., Babinec, A.: Localization of mobile robot using visual system. Int. J. Adv. Robot. Syst. 14(5). Article No. 1729881417736085. ISSN 1729-8814

    Article  Google Scholar 

  12. Pratt, W.K.: Digital Image Processing: PIKS Inside, 3rd edn. Wiley, New York (2001). ISBN 0-471-22132-5

    Book  MATH  Google Scholar 

  13. Pietikainen, M., Hadid, A., Zhao, G.: Computer Vision Using Local Binary Patterns. Computer Imaging and Vision, vol. 40. Springer, London (2011). https://doi.org/10.1007/978-0-85729-748-8. ISBN 978-0-85729-748-8

    Book  Google Scholar 

  14. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996). ISSN 0031-3203

    Article  Google Scholar 

  15. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75690-3_13. ISBN 978-3-540-75690-3

    Chapter  Google Scholar 

Download references

Acknowledgement

Authors of this paper wish to kindly thank to all supporting bodies, especially to grant APVV-15-0462: Research on sophisticated methods for analyzing the dynamic properties of respiratory epithelium’s microscopic elements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Hargaš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hargaš, L., Loncová, Z., Koniar, D., Jablončík, F., Volák, J. (2018). Detection Methods of Static Microscopic Objects. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78759-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78758-9

  • Online ISBN: 978-3-319-78759-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics