Skip to main content

Medical Image Classification with Hand-Designed or Machine-Designed Texture Descriptors: A Performance Evaluation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10814))

Included in the following conference series:

Abstract

Accurate diagnosis and early detection of various disease conditions are key to improving living conditions in any community. The existing framework for medical image classification depends largely on advanced digital image processing and machine (deep) learning techniques for significant improvement. In this paper, the performance of traditional hand-designed texture descriptors within the image-based learning paradigm is evaluated in comparison with machine-designed descriptors (extracted from pre-trained Convolution Neural Networks). Performance is evaluated, with respect to speed, accuracy and storage requirements, based on four popular medical image datasets. The experiments reveal an increased accuracy with machine-designed descriptors in most cases, though at a higher computational cost. It is therefore necessary to consider other parameters for tradeoff depending on the application being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  Google Scholar 

  2. Lumini, A., Nanni, L., Brahnam, S.: Multilayer descriptors for medical image classification. Comput. Biol. Med. 72, 239–247 (2016)

    Article  Google Scholar 

  3. Verma, B., McLeod, P., Klevansky, A.: Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst. Appl. 37(4), 3344–3351 (2010)

    Article  Google Scholar 

  4. Moura, D.C., López, M.A.G.: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int. J. Comput. Assist. Radiol. Surg. 8(4), 561–574 (2013)

    Article  Google Scholar 

  5. Liu, D., Wang, S., Huang, D., Deng, G., Zeng, F., Chen, H.: Medical image classification using spatial adjacent histogram based on adaptive local binary patterns. Comput. Biol. Med. 72, 185–200 (2016)

    Article  Google Scholar 

  6. Kopans, D.B.: The positive predictive value of mammography. Am. J. Roentgenol. 158, 521–526 (1992)

    Article  Google Scholar 

  7. Knutzen, A.M., Gisvold, J.J.: Likelihood of malignant disease for various categories of mammographically detected, nonpalpable breast lesions. In: Mayo Clinic Proceedings (1993)

    Google Scholar 

  8. Jiang, Y., et al.: Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology 198, 671–678 (1996)

    Article  Google Scholar 

  9. Hobson, P., Lovell, B.C., Percannella, G., Saggese, A., Vento, M., Wiliem, A.: HEp-2 staining pattern recognition at cell and specimen levels: datasets, algorithms and results. Pattern Recognit. Lett. 82, 12–22 (2016)

    Article  Google Scholar 

  10. Rubin, G.D.: Data explosion: the challenge of multidetector-row CT. Eur. J. Radiol. 2, 74–80 (2000)

    Article  Google Scholar 

  11. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  12. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  13. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848 (2014)

    Google Scholar 

  14. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  MathSciNet  Google Scholar 

  15. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63, 1455–1462 (2016)

    Article  Google Scholar 

  16. Gao, Z., Wang, L., Zhou, L., Zhang, J.: HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Heal. Inform. 21(2), 416–428 (2017)

    Article  Google Scholar 

  17. Bello-Cerezo, R., Bianconi, F., Cascianelli, S., Fravolini, M.L., di Maria, F., Smeraldi, F.: Hand-designed local image descriptors vs. off-the-shelf CNN-based features for texture classification: an experimental comparison. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 1–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_1

    Chapter  Google Scholar 

  18. Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)

    Article  Google Scholar 

  19. Hertel, L., Barth, E., Kaster, T., Martinetz, T.: Deep convolutional neural networks as generic feature extractors. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015, September (2015)

    Google Scholar 

  20. Chebira, A., et al.: A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinform. 8, 210 (2007)

    Article  Google Scholar 

  21. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Proceedings of NiSIS 2005 Nature Inspired Smart Information System, pp. 1–9 (2005)

    Google Scholar 

  22. Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12), 1213–1223 (2001)

    Article  Google Scholar 

  23. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit. 71, 158–172 (2017)

    Article  Google Scholar 

  24. Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikainen, M.: A survey of recent advances in texture representation. arXiv Preprint arXiv:1801.10324 (2018)

  25. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  26. Krizhevsky, A., Sulskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems vol. 60, no. 6, pp. 84–90 (2012)

    Article  Google Scholar 

  27. Vedaldi, A., Lenc, K.: Convolutional neural networks for MATLAB (2014)

    Google Scholar 

  28. Adetiba, E., Olugbara, O.O.: Lung cancer prediction using neural network ensemble with histogram of oriented gradient genomic features. Sci. World J. 2015, 17p (2015)

    Google Scholar 

  29. Adetiba, E., Olugbara, O.O.: Improved classification of lung cancer using radial basis function neural network with affine transforms of voss representation. PLoS ONE 10(12), e0143542 (2015)

    Article  Google Scholar 

  30. Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vis. 118(1), 65–94 (2016)

    Article  MathSciNet  Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Acknowledgements

This research was sponsored under the Centre for Research Innovation and Development Research Grant of Covenant University. The authors who shared their MATLAB code and toolboxes for LBP, LTP, LPQ, CLBP, RICLBP and MatConvNet are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joke A. Badejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badejo, J.A., Adetiba, E., Akinrinmade, A., Akanle, M.B. (2018). Medical Image Classification with Hand-Designed or Machine-Designed Texture Descriptors: A Performance Evaluation. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78759-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78758-9

  • Online ISBN: 978-3-319-78759-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics