Abstract
Biometric authentication using human ear is a recent trend in security applications including access control, user recognition, surveillance, forensic, and border security systems. This paper aims to propose a fast and robust authentication scheme using ear biometric. In this work, a fast technique based on the AdaBoost algorithm is used to detect the ear of the user from profile images. An efficient stereo matching algorithm is used to match the user’s ear data (probe) to the previously enrolled (stored) ear data in a gallery database for verification and recognition. Correspondences are established between extracted features of the probe and gallery image sequences. The performance of the recognition approach is evaluated on different standard ear datasets and compared with other techniques. Experimental results suggest the superiority of the proposed approach over other popular techniques reported in this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chowdhury, M., Gao, J., Islam, R.: Biometric authentication using facial recognition. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 287–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2_16
Marqués, I., Graña, M.: Image security and biometrics: a review. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7209, pp. 436–447. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28931-6_42
Jain, A., Kumar, A.: Biometric recognition: an overview. In: Mordini, E., Tzovaras, D. (eds.) The International Library of Ethics, Law and Technology, vol. 11, pp. 49–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-94-007-3892-8_3
Islam, S.M.S., Bennamoun, M., Owens, R., Davies, R.: A review of recent advances in 3D ear and expression invariant face biometrics. ACM Comput. Surv. 44(3), 14:1–14:34 (2012)
Islam, S.M.S., Davies, R., Bennamoun, M., Owens, R.A., Mian, A.S.: Multibiometric human recognition using 3D ear and face features. Pattern Recogn. 46(3), 613–627 (2013)
Choras, M.: Ear biometrics based on geometrical feature extraction. Electron. Lett. Comput. Vis. Image Anal. 5, 84–95 (2005)
Yuizono, T., Wang, Y., Satoh, K., Nakayama, S.: Study on individual recognition for ear images by using genetic local search. In: Proceedings of Congress on Evolutionary Computation, pp. 237–242 (2002)
Hurley, D.J., Nixon, M.S., Carter, J.N.: Force field feature extraction for ear biometrics. Comput. Vis. Image Underst. 98(3), 491–512 (2005)
Yan, P., Bowyer, K.W.: Biometric recognition using 3D ear shape. IEEE Trans. PAMI 29(8), 1297–1308 (2007)
Yaqubi, M., Faez, K., Motamed, S.: Ear recognition using features inspired by visual cortex and support vector machine technique. In: International Conference on Computer and Communication Engineering (ICCCE), pp. 533–537 (2008)
Islam, S., Davies, R., Bennamoun, M., Mian, A.: Efficient detection and recognition of 3D ears. Int. J. Comput. Vis. 95, 52–73 (2011)
Wang, X., Xia, H., Wang, Z.: The research of ear identification based on improved algorithm of moment invariants. In: Third International Conference on Information and Computing (ICIC), p. 58 (2010)
Gutierrez, L., Melin, P., Lopez, M.: Modular neural network integrator for human recognition from ear images. In: The 2010 International Joint Conference on Neural Networks (IJCNN) (2010)
Alaraj, M., Hou, J., Fukami, T.: A neural network based human identification framework using ear images. In: TENCON (2010)
UND (2005) Database. http://www.nd.edu/cvrl/CVRL/DataSets.html
USTB (2002) Database. http://www.en.ustb.edu.cn/resb/
IIT Delhi ear database. http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database\_Ear.htm
Liu, H., Liu, D.: Improving adaboost ear detection with skin-color model and multi-template matching. In: 3rd IEEE ICCSIT, vol. 8, pp. 106–109 (2010)
Chowdhury, M., Gao, J., Islam, R.: Fuzzy logic based filtering for image de-noising. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2016), Vancouver, Canada (2016)
Castillo, C.D., Jacobs, D.W.: Using stereo matching for 2D face recognition across pose. In: Proceedings IEEE International Conference Computer Vision and Pattern Recognition (2007)
Ashraf, A.B., Lucey, S., Chen, T.: Learning patch correspondences for improved viewpoint invariant face recognition. In: Proceedings IEEE International Conference Computer Vision and Pattern Recognition, June 2008
Chowdhury, M., Gao, J., Islam, R.: Fast stereo matching with fuzzy correlation. In: IEEE Conference on Industrial Electronics and Applications (ICIEA 2016), Hefei, China (2016)
Chowdhury, M., Bhuiyan, M.A.: Fast window based stereo matching for 3D scene reconstruction. Int. Arab J. Inf. Technol. 10(3), 209–214 (2013)
Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12, 16–22 (2000)
Kumar, R., Selvam, P., Rao, K.N.: Pattern extraction methods for ear biometrics: a survey. In: Proceedings World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, pp. 1657–1660 (2009)
Chen, H., Bhanu, B.: Human ear recognition in 3D. IEEE Trans. PAMI 29(4), 718–737 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Chowdhury, M., Islam, R., Gao, J. (2018). Fast and Robust Biometric Authentication Scheme Using Human Ear. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A. (eds) Security and Privacy in Communication Networks. SecureComm 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-78816-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-78816-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78815-9
Online ISBN: 978-3-319-78816-6
eBook Packages: Computer ScienceComputer Science (R0)