Abstract
In this paper we analyse a flexible real world-based model for designing school bus transit systems and note a number of parallels between this and other well-known combinatorial optimisation problems including the vehicle routing problem, the set covering problem, and one-dimensional bin packing. We then describe an iterated local search algorithm for this problem and demonstrate the sort of solutions that we can expect with different types of problem instance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In our case a value for x is selected randomly according to a binomial distribution \(X\sim B(|V'_1|, 3/|V'_1|)\).
References
Babin, G., Deneault, S., Laporte, G.: Improvements to the Or-opt heuristic for the symmetric travelling salesman problem. J. Oper. Res. Soc. 58(3), 402–407 (2007)
Bertini, R., El-Geneidy, A.: Modeling transit trip time using archived bus dispatch system data. J. Transp. Eng. 130(1), 56–67 (2004)
Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 60(1), 80–91 (1959)
Eksioglu, B., Volkan, V., Reisman, A.: The vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)
Garey, M., Johnson, D.: Computers and Intractability - A Guide to NP-Completeness, 1st edn. W. H. Freeman and Company, San Francisco (1979)
Laporte, G.: Fifty years of vehicle routing. Transp. Sci. 43, 408–416 (2009)
Letchford, A., Lysgaard, J., Eglese, R.: A branch-and-cut algorithm for the capacitated open vehicle routing problem. J. Oper. Res. Soc. 58, 1642–1651 (2007)
Lewis, R.: A Guide to Graph Colouring: Algorithms and Applications. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25730-3
Park, J., Kim, B.: The school bus routing problem: a review. Eur. J. Oper. Res. 202, 311–319 (2010)
Pillac, V., Gendreau, M., Guéret, C., Medagila, A.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225, 1–11 (2013)
Transit Cooperative Research Program: Transit Capacity and Quality of Service Manual, 3rd edn. (2013). ISBN 978-0-309-28344-1
Qin, H., Ming, W., Zhang, Z., Xie, Y., Lim, A.: A tabu search algorithm for the multi-period inspector scheduling problem. Comput. Oper. Res. 59, 78–93 (2015)
Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., Springael, J.: A metaheuristic for the school bus routing problem with bus stop selection. Eur. J. Oper. Res. 229, 518–528 (2013)
Silva, M., Subramanian, A., Ochi, L.S.: An interated local search heuristic for the split delivery vehicle routing problem. Comput. Oper. Res. 53, 234–239 (2015)
Wang, C., Zhirui, Y., Yuan, W., Yueru, X., Wei, W.: Modeling bus dwell time and time lost serving stop in China. J. Public Transp. 19(3), 55–77 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Lewis, R., Smith-Miles, K., Phillips, K. (2018). The School Bus Routing Problem: An Analysis and Algorithm. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-78825-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78824-1
Online ISBN: 978-3-319-78825-8
eBook Packages: Computer ScienceComputer Science (R0)