
A Faster Implementation of Online Run-Length

Burrows-Wheeler Transform

Tatsuya Ohno Yoshimasa Takabatake Tomohiro I
Hiroshi Sakamoto

Kyushu Institute of Technology, Japan
{t ohno, takabatake}@donald.ai.kyutech.ac.jp,

{tomohiro, hiroshi}@ai.kyutech.ac.jp

Abstract

Run-length encoding Burrows-Wheeler Transformed strings, resulting in Run-Length BWT
(RLBWT), is a powerful tool for processing highly repetitive strings. We propose a new algo-
rithm for online RLBWT working in run-compressed space, which runs in O(n lg r) time and O(r lgn)
bits of space, where n is the length of input string S received so far and r is the number of runs in the
BWT of the reversed S. We improve the state-of-the-art algorithm for online RLBWT in terms of
empirical construction time. Adopting the dynamic list for maintaining a total order, we can replace
rank queries in a dynamic wavelet tree on a run-length compressed string by the direct comparison
of labels in a dynamic list. The empirical result for various benchmarks show the efficiency of our
algorithm, especially for highly repetitive strings.

1 Introduction

1.1 Motivation

The Burrows-Wheeler Transform (BWT) [8] is one of the most successful and elegant technique for
lossless compression. When a string contains several frequent substrings, the transformed string would
have several runs, i.e., maximal repeat of a symbol. Then, such a BWT string is easily compressed by
run-length compression. We refer to the run-length compressed string as the Run-Length BWT (RLBWT)
of the original string. Because of the definition of BWT, the number r of runs in the RLBWT is closely
related to the easiness of compression of the original string. In fact, r can be (up to) exponentially
smaller than the text length, and several studies [4, 12, 18, 19] showed that r is available for a measure of
repetitiveness.

After the invention of BWT, various applications have been proposed for string processing [7, 9, 10].
The most notable one would be the BWT based self-index, called FM index [10], which allows us to search
patterns efficiently while storing text in the entropy-based compressed space. However, the traditional
entropy-based compression is not enough to process highly repetitive strings because it does not capture
the compressibility in terms of repetitiveness. Therefore several authors have studied “repetitive-aware”
self-indexes based on RLBWT [4,12, 18,19]. In particular, a self-index in [4] works in space proportional
to the sizes of the RLBWT and LZ77 [20], another powerful compressor that can capture repetitiveness.

When it comes to constructing the RLBWT, a major concern is to reduce the working space depending
on the repetitiveness of a given text. Namely, the problem is to construct the RLBWT online in run-length
compressed space. It has been suggested in [12] that we can solve the problem using a dynamic data
structure supporting rank queries on run-length encoded strings. An implementation appears very recently
in [1,17], proving its merit in space reduction. However the throughput is considerably sacrificed probably
due to its use of dynamic succinct data structure. To ameliorate the time consumption, we present a
novel algorithm for online RLBWT and show experimentally that our implementation runs faster with
reasonable increase of memory consumption. Since Policriti and Prezza [16] recently proposed algorithms
to compute LZ77 factorization in compressed space via RLBWT, online RLBWT becomes more and
more important, and therefore, practical time-space tradeoffs are worth exploring.

1

ar
X

iv
:1

70
4.

05
23

3v
2

 [
cs

.D
S]

 1
5

O
ct

 2
01

7

1.2 Our Contribution

Given an input string S = S[1]S[2] · · ·S[n] of length n in online manner, the algorithm described in [16]
constructs the RLBWT of the reversed string SR = S[n] · · ·S[2]S[1] in O(r lg n) bits of space and O(n lg r)
time, where r is the number of runs appearing in the BWT of SR. When a new input symbol c is
appended, whereas the BWT of Sc requires (in the worst case) sorting all the suffixes again, the BWT of
(Sc)R requires just inserting c into the BWT of SR, and the insert position can be efficiently computed
by rank operations on the BWT of SR. Hence a dynamic data structure on a run-length compressed
string supporting rank operations allows to construct the RLBWT online. However, the algorithm of [16]
internally uses rank operations on dynamic wavelet trees, which is considerably slow in practice.

In order to get a faster implementation, we replace the work carried out on dynamic wavelet trees by
a comparison of integers using the dynamic maintenance of a total order. Here, the Order-Maintenance
Problem is to maintain a total order of elements subject to insert(X,Y): insert a new element Y
immediately after X in the total order, delete(X): remove X from the total order, and order(X,Y):
determine whether X > Y in the total order. Bender et al. [5] proposed a simple algorithm for this
problem to allow O(1) amortized insertion and deletion time and O(1) worst-case query time. Adopting
this technique, we develop a novel data structure for computing the insert position of c in the current
BWT by a comparison of integers, instead of heavy rank operations on dynamic wavelet trees.

Compared to the baseline [16], we significantly improve the throughput of RLBWT with reasonable
increase of memory consumption. Although there is a tradeoff between memory consumption and
throughput performance, as shown in the experimental results, the working space of our algorithm is still
sufficiently smaller than the input size, especially for highly repetitive strings.

2 Preliminaries

Let Σ be an ordered alphabet. An element of Σ∗ is called a string. The length of a string S is denoted by
|S|. The empty string ε is the string of length 0, namely, |ε| = 0. For a string S = XY Z, strings X, Y ,
and Z are called a prefix, substring, and suffix of S, respectively. For 1 ≤ i ≤ |S|, the ith character of a
string S is denoted by S[i]. For 1 ≤ i ≤ j ≤ |S|, let S[i..j] = S[i] · · ·S[j], i.e., S[i..j] is the substring of S
starting at position i and ending at position j in S. For convenience, let S[i..j] = ε if j < i.

In the run-length encoding (RLE) of a string S, a maximal run ce (for some c ∈ Σ and e ∈ N) of a single
character in S is encoded by a pair (c, e), where we refer to c and respectively e as the head and exponent
of the run. Since each run is encoded in O(1) words (under Word RAM model with word size Ω(lg |S|)),
we refer to the number of runs as the size of the RLE. For example, S = aaaabbcccacc = a4b2c3a1c2 is
encoded as (a, 4), (b, 2), (c, 3), (a, 1), (c, 2), and the size of the RLE is five.

For any string S and any c ∈ Σ, let occc(S) denote the number of occurrences of c in S. Also,
let occ<c(S) denote the number of occurrences of any character smaller than c in S, i.e., occ<c(S) =∑

c′<c occc′(S). For any c ∈ Σ and position i (1 ≤ i ≤ |S|), rankc(S, i) denotes the number of occurrences
of c in S[1..i], i.e., rankc(S, i) = occc(S[1..i]). For any c ∈ Σ and i (1 ≤ i ≤ occc(S)), selectc(S, i) denotes
the position of the ith c in S, i.e., selectc(S, i) = min{j | rankc(S, j) = i}. Also we let access(S, i) denote
the query to ask for S[i]. We will consider data structures to answer occ<c, rank, select, and access
without having S explicitly.

2.1 BWT

Here we define the BWT of a string S ∈ Σ+, denoted by BWTS . For convenience, we assume that S
ends with a terminator $ ∈ Σ whose lexicographic order is smaller than any character in S[1..|S| − 1].
BWTS is obtained by sorting all non-empty suffixes of S lexicographically and putting the immediately
preceding character of each suffix (or $ if there is no preceding character) in the order.

For the online construction of BWT, it is convenient to consider “prepending” (rather than appending)
a character to S because it does not change the lexicographic order among existing suffixes.1 Namely,
for some c ∈ Σ, we consider updating BWTS to BWTcS efficiently. The task is to replace the unique
occurrence of $ in BWTS with c, and insert $ into appropriate position. Since replacing can be easily
done if we keep track of the current position of $, the main task is to find the new position of $ to
insert, which can be done with a standard operation on BWT as follows: Let i be the position of $ in
BWTS , then the new position is computed by rankc(BWTS , i) + occ<c(S) + 1 because the new suffix cS
is the (rankc(BWTS , i) + 1)th lexicographically smallest suffix among those starting with c, and there

1Or appending a character but constructing BWT for reversed string.

2

are occ<c(S) suffixes starting with some c′ (< c). Thus, BWT can be constructed online using a data
structure that supports rank, occ<c, and insert queries.

Let RLBWTS denote the run-length encoding of BWTS . In Section 3, we study data structures that
supports rankc, occ<c and insert queries on run-length encoded strings, which can be directly used to
construct RLBWTS online in O(|S| lg r) time and O(r lg |S|) bits of space, where r is the size of RLE of
BWTS .

2.2 Searchable partial sums with indels

We use a data structure for the searchable partial sums with indels (SPSI) problem as a tool. The SPSI
data structure T ought to maintain a dynamic sequence Z[1..m] of non-negative integers (called weights)
to support the following queries as well as insertion/deletion of weights:

• T.sum(k): Return the partial sum
∑k

j=1 Z[j].

• T.search(i): For an integer i (1 ≤ i ≤ T.sum(m)), return the minimum index k such that T.sum(k) ≥
i.

• T.update(k, δ): For a (possibly negative) integer δ with Z[k] + δ ≥ 0, update Z[k] to Z[k] + δ.

We employ a simple implementation of T based on a B+tree whose kth leaf corresponds to Z[k].2 Let
B (≥ 3) be the parameter of B+trees that represents the arity of an internal node. Namely the number of
children of each internal node ranges from B/2 to B (unless m is too small), and thus, the height of the
tree is O(logB m). An internal node has two integer arrays LA and WA of length B such that LA[j] (resp.
WA[j]) stores the sum of #leaves (resp. weights) under the subtrees of up to the jth child of the node.

Using these arrays, we can easily answer T.sum and T.search queries in O(logB m) time while traversing
the tree from the root to a leaf: For example, T.sum(k) can be computed by traversing to the kth leaf
(navigated by LA) while summing up the weights of the subtrees existing to the left of the traversed path
by WA. It is the same for T.search(i) (except switching the roles of LA and WA). For T.update(k, δ)
query, we only have to update LA and WA of the nodes in the path from the root to the kth leaf,
which takes O(B logB m) time. Also, indels can be done in O(B logB m) time with standard split/merge
operations of B+trees.

Naively the space usage is O(m lgM) bits, where M is the sum of all weights. Here we consider
improving this to O(m lg(M/m)) bits. Let us call an internal node whose children are leaves a bottom node,
for which we introduce new arity parameter BL, differentiated from B for the other internal nodes. For a
bottom node, we discard LA, WA and the pointers to the leaves. Instead we let it store the weights of its
children in a space efficient way. For example, using gamma encoding, the total space usage for the bottom
nodes becomes O(

∑m
j=1 lgZ[j]) = O(m lg(M/m)) bits. The other (upper) part of T uses O(m lgM/BL)

bits, which can be controlled by BL. The queries can be supported in O(BL +B logB m/BL) time. Hence,
setting B = O(1) and BL = Θ(lgm), we get the next lemma.

Lemma 1 For a dynamic sequence of weights, there is a SPSI data structure of O(m lg(M/m)) bits
supporting queries in O(lgm) time, where m is the current length of the sequence and M is the sum of
weights.

3 Dynamic Rank/Select Data Structures on Run-length En-
coded Strings

In this section, we study dynamic rank/select data structures working on run-length encoded strings.
Note that select and delete queries are not needed for online RLBWT algorithms, but we also provide
them as they may find other applications. Throughout this section, we let X denote the current string
with n = |X |, RLE size r, and containing σ distinct characters. We consider the following update queries
as well as rankc, selectc, access and occ<c queries on X :

• insert(X , i, ce): For a position i (1 ≤ i ≤ n+ 1), c ∈ Σ and e ∈ N , insert ce between X [i− 1] and
X [i], i.e., X ← X [1..i− 1]ceX [i..n].

2More sophisticated solutions can be found in [6, 11, 15], but none of them has been implemented to the best of our
knowledge.

3

2 4
4 10

2 4
4 8

4 8
10 18

3 1 4 2 2 2 1 3

3 6 9
5 13 18

3 1 1 2 4 2 2 1 2 1 1

2 4 7
2 6 11

9 16
18 29

2 2 1 1 3

Figure 1: For X = a3b1a1c2a4b2a2c1a2b1c1a2c2a1b1a3, examples of Tall (left) and Ta (right) with
B = BL = 3 are shown. Note that the other components of the data structure (Tb, Tc and H) are omitted
here. Tall holds the sequence [3, 1, 1, 2, 4, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3] of the exponents in its leaves, and Ta

holds the sequence [3, 1, 4, 2, 2, 2, 1, 3] of the exponents of a’s runs in its leaves. For a node having two
rows, the first row represents LA and the second WA.

• delete(X , i, e): For a position i (1 ≤ i ≤ n − e + 1) such that X [i..i + e − 1] ∈ ce for some c ∈ Σ,
delete X [i..i+ e− 1], i.e., X ← X [1..i− 1]X [i+ e..n].

Theorem 2 There is a data structure that occupies O(r lg n) bits of space and supports rankc, selectc,
access, occ<c, insert and delete in O(lg r) time.

We will describe two data structures holding the complexities of Theorem 2 in theory but likely
exhibiting different time-space tradeoffs in practice. In Subsection 3.1, we show an existing data structure.
On the basis of this data structure, in Subsection 3.2, we present our new data structure to get a faster
implementation.

We note that the problem to support occ<c in O(σ lg n) bits of space and O(lg σ) time is somewhat
standard. For instance, we can think about the SPSI data structure of Lemma 1 storing occc(X)’s in
increasing order of c. It is easy to modify the data structure so that, for a given c, we can traverse from
the root to the leaf corresponding to the predecessor of c, where we mean by the predecessor of c the
largest character c′ that is smaller than c and appears in X . Then occ<c queries can be supported in a
similar way to sum queries using WA. Thus in the following subsections, we focus on the other queries.

3.1 Existing data structure

Here we review the data structure described in [16] with implementation available in [1, 17].3 In theory it
satisfies Theorem 2 though its actual implementation has the time complexity of O(lg σ lg r) slower than
O(lg r).

Let (c1, e1), (c2, e2), . . . , (cr, er) be the RLE of X . The data structure consists of three components
(see also Fig. 1 for the first two):

1. Tall : SPSI data structure for the sequence e1e2 · · · er of all exponents.

2. Tc (for every c ∈ Σ): SPSI data structure for the sequence of the exponents of c’s run.

3. H: Dynamic rank/select data structure for the head string H = c1c2 · · · cr. There is a data structure
(e.g., see [13, 14]), with which H can be implemented in r lg σ + o(r lg σ) + O(σ lg r) bits while
supporting queries in O(lg r) time. (However, the actual implementation of [1,17] employs a simpler
algorithm based on wavelet trees that has O(lg σ lg r) query time.)

Note that for every run ce there are two copies of its exponent, one in Tall and the other in Tc. Since
σ ≤ r ≤ n holds, the data structure (excluding occ<c data structure) uses r lg σ+ o(r lg σ) +O(r lg(n/r) +
σ lg r) = O(r lg n) bits.

Let us demonstrate how to support rankc(X , i). Firstly by computing k ← Tall .search(i) we can find
that X [i] is in the kth run. Next by computing kc ← H.rankc(H, k) we notice that, up to the kth run,
there are kc runs with head c. Here we can check if the head of the kth run is c, and compute the number
e of c’s in the kth run appearing after X [i]. Finally, Tc.sum(kc)− e tells the answer of rankc(X , i). It is
easy to see that each step can be done in O(lg r) time.

Note that H plays an important role to bridge two trees Tall and Tc by converting the indexes k and
kc. The update queries also use this mechanism: We first locate the update position in Tall , then find

3The basic idea of the algorithm originates from the work of RLFM+ index in [12].

4

19
3 1 1 2 4 2 2 1 2 1 1 2 2

5 13 18 2 6 11

18 29

4 10 4 8

10 18

1 1 3

a aa a

2 7 8 13 15

Figure 2: For X = a3b1a1c2a4b2a2c1a2b1c1a2c2a1b1a3 (same as the one in Fig. 1), examples of modified
Tall (up) and Ta (down) with B = BL = 3 are shown, where Ta is illustrated upside down. Note that the
data structure related to Tb and Tc (e.g., pointers of Change1 to them) are omitted here. Each pair of
leaves corresponding to the same run is connected by bidirectional pointers (Change1). Each internal
node of Ta has pointer to its leftmost leaf (Change2). The character a is stored in each bottom node
of Ta (Change3). Each bottom node of Tall stores a label (underlined number) that is monotonically
increasing from left to right (Change4). LAs and weights in the leaves of Ta are discarded (Change5).

the update position in Tc by bridging two trees with H. After locating the positions, the updates can be
done in each dynamic data structure. selectc(X , i) can be answered by first locating ith c in Tc, finding
the corresponding position in Tall with H.selectc, then computing the partial sum up to the position in
Tall . Finally, access(X , i) is answered by H.access(H,Tall .search(i)).

3.2 New data structure

Now we present our new data structure satisfying Theorem 2. We share some of the basic concepts
with the data structure described in Section 3.1. For example, our data structure also uses the idea of
answering queries by going back and forth between Tall and Tc. However we do not use H to bridge the
two trees. Succinct data structures (like H) are attractive if the space limitation is critical, but otherwise
the suffered slow-down might be intolerable. Therefore we design a fast algorithm that bridges the two
trees in a more direct manner, while taking care not to blow up the space too much.

In order to do without H, we make some changes to Tall and Tc (see also Fig. 2):

1. We maintain bidirectional pointers connecting every pair of leaves representing the same run in Tall

and Tc (recall that every run with head c has exactly one corresponding leaf in each of Tall and Tc).

2. For every internal node of Tc, we store a pointer to the leftmost leaf in the subtree rooted at the
node.

3. For every bottom node of Tc, we store the character c.

4. For every bottom node of Tall , we store a label (a positive integer) such that the labels of bottom
nodes are monotonically increasing from left to right. Since bottom nodes are inserted/deleted
dynamically, we utilize the algorithm [5] for the order-maintenance problem to maintain the labels.

5. Minor implementation notes: Every LA can be discarded as our data structure does not use the
navigation of indexes. Also, we can quit storing the leaf-level weights in Tc as it can be retrieved
using the pointer to the corresponding leaf in Tall .

3.2.1 Space analysis.

In the change list, Changes1-4 increase the space usage while Change5 reduces. It is easy to see that
the increase fits in O(r lg n) bits. More precisely, since Changes2-4 are made to internal nodes, the
increase by these changes is O(r lg n/BL) bits, which is more or less controllable by BL (recall that BL is

5

arity parameter for bottom nodes, and we have O(r lg n/BL) = O(r lg(n/r)) by setting BL = Θ(lg r) for
Lemma 1). On the other hand, Change1 is made to leaves and takes 2r lg r bits of space. Thus, the total
space usage of the data structure (excluding occ<c data structure) is 2r lg r +O(r lg(n/r)) = O(r lg n)
bits.

By this analysis, it is expected that 2r lg r becomes a leading term when the ratio n/r is small, i.e.,
compressibility in terms of RLE is not high. It should be compared to r lg σ+o(r lg σ)+O(r lg(n/r)+σ lg r)
bits used by the data structure of Section 3.1, in which r lg r term does not exist. Hence, the smaller the
ratio n/r, the larger the gap between the two data structures in space usage will be. On the other hand,
when the r lg(n/r) term is leading, i.e., r is sufficiently smaller than n, the increase by the r lg r term
would be relatively moderate.

3.2.2 Answering queries.

We show how to answer queries on our data structure. All queries are supported in O(lg r) time.
access(X , i): We first traverse from the root of Tall to the run containing X [i] (navigated by WA),

jump to the corresponding leaf of Tc by pointer of Change1, then read the character stored in the bottom
node of Tc due to Change3.

selectc(X , i): We first traverse from the root of Tc to the run containing ith c (navigated by WA). At
the same time, we can compute the rank i′ of ith c within the run. Next we jump to the corresponding
leaf in Tall by pointer of Change1, then compute the sum of characters appearing strictly before the leaf
while going up the tree. The answer to selectc(X , i) is the sum plus i′.

rankc(X , i): Recalling the essence of the algorithm described in Section 3.1, we can answer rankc(X , i)
if we locate the leaf of Tc representing the rightmost c’s run that starts at or before position i. In order
to locate such leaf v, we first traverse from the root of Tall to the run containing X [i] (navigated by WA).
If we are lucky, we may find a c’s run in the bottom node containing X [i], in which case we can easily get
v or the successor of v by using the pointer of Change1 outgoing from the c’s run. Otherwise, we search
for v traversing Tc from the root navigated by labels of Change4. Let t be the label of the bottom node
containing X [i]. Then, it holds that v is the rightmost leaf pointing to a node of Tall with label smaller
than t. Since the order of labels is maintained, we can use t as a key for binary search, i.e., we notice
that an internal node u (and its succeeding siblings) cannot contain v if the leftmost leaf in the subtree
rooted at u points to a node of Tall with label greater than t. Using the pointer of Change2 to jump to
the leftmost leaf, we can conduct each comparison in O(1) time, and thus, we can find v in O(lg r) time.

Update queries: The main task is to locate the update positions both in Tall and Tc, and this is
exactly what we did in rankc query—locating the run containing X [i] and v. After locating the update
positions, the update can be done in O(lg r) time in each tree. When the update operation invokes
insertion/deletion of a bottom node of Tall , we maintain labels of Change4 using the algorithm of [5]. We
note that the algorithm of [5] takes O(lg r) amortized time per “indel of bottom node”, and hence, takes
O(1) amortized time per “indel of leaf” (recall that BL = Θ(lg r), and one indel of bottom node needs
Θ(lg r) indels of leaves). In addition, the algorithm is quite simple and efficiently implementable without
any data structure than labels themselves.

4 Experiments

We implemented in C++ the online RLBWT construction algorithm based on our new rank/select data
structure described in Section 3.2 (the source code is available at [2]). We evaluate the performance
of our method comparing with the state-of-the-art implementation [1] (we refer to it as PP taking the
authors’ initials of [16]) of the algorithm based on the data structure described in Section 3.1. We tested
on highly repetitive datasets in repcorpus4, well-known corpus in this field, and some larger datasets
created from git repositories. For the latter, we use the script [3] to create 1024MB texts (obtained by
concatenating source files from the latest revisions of a given repository, and truncated to be 1024MB)
from the repositories for boost5, samtools6 and sdsl-lite7 (all accessed at 2017-03-27). The programs were
compiled using g++6.3.0 with -Ofast -march=native option. The experiments were conducted on a 6core
Xeon E5-1650V3 (3.5GHz) machine with 32GB memory running Linux CentOS7.

4See http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf for statistics of the datasets.
5https://github.com/boostorg/boost
6https://github.com/samtools/samtools
7https://github.com/simongog/sdsl-lite

6

http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf
https://github.com/boostorg/boost
https://github.com/samtools/samtools
https://github.com/simongog/sdsl-lite

Table 1: Computation time in seconds and working space in mega bytes to construct the RLBWT of r
runs from each dataset of size |S| using the proposed method (ours) and the previous method (PP).

dataset |S| (MB) r
computation time (sec) working space (MB)

ours PP ours PP

fib41 255.503 42 27 552 0.004 0.067
rs.13 206.706 76 16 623 0.005 0.068
tm29 256.000 82 24 802 0.005 0.068
dblp.xml.00001.1 100.000 172,195 37 2,060 2.428 1.307
dblp.xml.00001.2 100.000 175,278 37 2,070 2.446 1.322
dblp.xml.0001.1 100.000 240,376 40 2,100 4.381 1.586
dblp.xml.0001.2 100.000 269,690 40 2,105 4.565 1.730
dna.001.1 100.000 1,717,162 58 1,667 35.966 5.729
english.001.2 100.000 1,436,696 58 2,153 20.680 6.166
proteins.001.1 100.000 1,278,264 58 1,839 19.790 5.133
sources.001.2 100.000 1,211,104 49 2,141 19.673 5.721
cere 439.917 11,575,582 534 7,597 186.073 43.341
coreutils 195.772 4,732,794 128 4,479 81.642 22.301
einstein.de.txt 88.461 99,833 30 1,807 2.083 1.106
einstein.en.txt 445.963 286,697 182 9,293 4.836 2.296
Escherichia Coli 107.469 15,045,277 154 2,047 316.184 36.655
influenza 147.637 3,018,824 91 2,501 72.730 12.386
kernel 246.011 2,780,095 146 5,333 41.758 12.510
para 409.380 15,635,177 547 7,364 329.901 52.005
world leaders 44.792 583,396 17 857 9.335 2.891
boost 1024.000 63,710 320 20,327 1.161 0.904
samtools 1024.000 562,326 440 21,375 9.734 3.595
sdsl 1024.000 758,657 419 21,014 17.760 4.803

Table 1 shows the comparison of the two methods on construction time and working space. The result
shows that our method significantly improves the construction time of PP as we intended. Especially for
dumpfiles of Wikipedia articles (einstein.de.txt and einstein.en.txt), our method ran 60 times faster than
PP. Our method also shows good performance for the 1024MB texts from git repositories. On the other
hand, the working space is increased (except the artificial datasets, which are extremely compressible) by
1.3 to 8.7 times. Especially for less compressible datasets in terms of RLBWT like Escherichia Coli, the
space usage tends to be worse as predicted by space analysis in Section 3.2. Still for most of the other
datasets the working space of our method keeps way below the input size.

5 Conclusion

We have proposed an improvement of online construction of RLBWT [1,17], intended to speed up the
construction time. We significantly improved the throughput of original RLBWT with reasonable increase
of memory consumption for the benchmarks from various domain. By applying our new algorithm to the
algorithm of computing LZ77 factorization in compressed space using RLBWT [16], we would immediately
improve the throughput of [16]. As LZ77 plays a central role in many problems on string processing,
engineering/optimizing implementation for compressed LZ77 computation is important future work.

6 Acknowledgments

This work was supported by JST CREST (Grant Number JPMJCR1402), and KAKENHI (Grant Numbers
17H01791 and 16K16009).

7

References

[1] DYNAMIC: dynamic succinct/compressed data structures library. https://github.com/xxsds/
DYNAMIC.

[2] Online RLBWT. https://github.com/itomomoti/OnlineRLBWT.

[3] get-git-revisions: Get all revisions of a git repository. https://github.com/nicolaprezza/

get-git-revisions.

[4] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Composite
repetition-aware data structures. In CPM, pages 26–39, 2015.

[5] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito. Two
simplified algorithms for maintaining order in a list. In ESA, pages 152–164, 2002.

[6] Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj,
and Søren Vind. Dynamic relative compression, dynamic partial sums, and substring concatenation.
In ISAAC, pages 18:1–18:13, 2016.

[7] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de bruijn graphs.
In WABI, pages 225–235, 2012.

[8] Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm. Technical
report, HP Labs, 1994.

[9] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Structuring labeled
trees for optimal succinctness, and beyond. In FOCS, pages 184–196, 2005.

[10] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In FOCS,
pages 390–398, 2000.

[11] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data structures for searchable
partial sums with optimal worst-case performance. Theor. Comput. Sci., 412(39):5176–5186, 2011.

[12] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of highly
repetitive sequence collections. J. Computational Biology, 17(3):281–308, 2010.

[13] J. Ian Munro and Yakov Nekrich. Compressed data structures for dynamic sequences. In ESA, pages
891–902, 2015.

[14] Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations. SIAM J. Comput.,
43(5):1781–1806, 2014.

[15] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees. ACM
Transactions on Algorithms, 10(3):16, 2014.

[16] Alberto Policriti and Nicola Prezza. Computing LZ77 in run-compressed space. In DCC, pages
23–32, 2016.

[17] Nicola Prezza. A framework of dynamic data structures for string processing. In SEA, 2017. to
appear.

[18] Jouni Sirén. Compressed Full-Text Indexes for Highly Repetitive Collections. PhD thesis, University
of Helsinki, 2012.

[19] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed indexes are
superior for highly repetitive sequence collections. In SPIRE, pages 164–175, 2008.

[20] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory, IT-23(3):337–349, 1977.

8

https://github.com/xxsds/DYNAMIC
https://github.com/xxsds/DYNAMIC
https://github.com/itomomoti/OnlineRLBWT
https://github.com/ nicolaprezza/get-git-revisions
https://github.com/ nicolaprezza/get-git-revisions

	1 Introduction
	1.1 Motivation
	1.2 Our Contribution

	2 Preliminaries
	2.1 BWT
	2.2 Searchable partial sums with indels

	3 Dynamic Rank/Select Data Structures on Run-length Encoded Strings
	3.1 Existing data structure
	3.2 New data structure
	3.2.1 Space analysis.
	3.2.2 Answering queries.

	4 Experiments
	5 Conclusion
	6 Acknowledgments

