Skip to main content

ReneGENE-GI: Empowering Precision Genomics with FPGAs on HPCs

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2018)

Abstract

Genome Informatics (GI) serves to be a holistic and inter-disciplinary approach in understanding genomic big data from a computational perspective. In another decade, the omics data production rate is expected to be approaching one zettabase per year, at very low cost. There is dire need to bridge the gap between the capabilities of Next Generation Sequencing (NGS) technology in churning out omics big data and our computational capabilities in omics data management, processing, analytics and interpretation. The High Performance Computing platforms seem to be the choice for bio-computing, offering high degrees of parallelism and scalability, while accelerating the multi-stage GI computational pipeline. Amidst such high computing power, it is the choice of algorithms and implementations in the entirety of the GI pipeline that decides the precision of bio-computing in revealing biologically relevant information. Through this paper, we present ReneGENE-GI, an innovatively engineered GI pipeline. We also present the performance analysis of ReneGENE-GI’s Comparative Genomics Module (CGM), prototyped on a reconfigurable bio-computing accelerator platform. Alignment time for this prototype is about one-tenth the time taken by the single GPU OpenCL implementation of ReneGENE-GI’s CGM, which itself is 2.62x faster than CUSHAW2-GPU (the GPU CUDA implementation of CUSHAW). With the single-GPU implementation demonstrating a speed up of 150+ x over standard heuristic aligners in the market like BFAST, the reconfigurable accelerator version of ReneGENE-GI’s CGM is several orders faster than the competitors, offering precision over heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frese, K.S., Katus, H.A., Meder, B.: Next-generation sequencing: from understanding biology to personalized medicine. Biology 2(4), 378–398 (2013)

    Article  Google Scholar 

  2. Mardis, E.R.: A decade’s perspective on DNA sequencing technology. Nat. Perspect. 470, 198–203 (2011)

    Google Scholar 

  3. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., et al.: Big data: astronomical or genomical? PLOS Biol. 13(7), e1002195 (2015)

    Article  Google Scholar 

  4. Lee, C.Y., Chiu, Y.C., Wang, L.B., et al.: Common applications of next-generation sequencing technologies in genomic research. Transl. Cancer Res. 2(1), 33–45 (2013)

    Google Scholar 

  5. Alyass, A., Turcotte, M., Meyre, D.: From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med. Genom. 8, 33 (2015)

    Article  Google Scholar 

  6. Costa, F.F.: Big data in genomics: challenges and solutions. G.I.T. Lab. J. 11(12), 2–4 (2012)

    Google Scholar 

  7. Baker, M.: Next-generation sequencing: adjusting to data overload. Nat. Methods 7, 495–499 (2010)

    Article  Google Scholar 

  8. Chen, C., Schmidt, B.: Performance analysis of computational biology applications on hierarchical grid systems. In: Proceedings of IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2004, Chicago, IL, pp. 426–433 (2004)

    Google Scholar 

  9. Bader, D.A.: High-performance algorithm engineering for large-scale graph problems and computational biology. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 16–21. Springer, Heidelberg (2005). https://doi.org/10.1007/11427186_3

    Chapter  Google Scholar 

  10. SERC: Indian Institute of Science, Bangalore. Sahasrat (Cray XC40). http://www.serc.iisc.in/facilities/cray-xc40-named-as-sahasrat/

  11. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  12. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  13. Altschul, S.F., Bundschuh, R., Olsen, R., Hwa, T.: The estimation of statistical parameters for local alignment score distributions. Nucl. Acids Res. 29, 351–361 (2001)

    Article  Google Scholar 

  14. Myers, E.: A sublinear algorithm for approximate keyword searching. Algorithmica 12, 345–374 (1994)

    Article  MathSciNet  Google Scholar 

  15. Treangen, T.J., Salzberg, S.L.: Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. 13, 36–46 (2012)

    Article  Google Scholar 

  16. Flicek, P., Birney, E.: Sense from sequence reads: methods for alignment and assembly. Nat. Methods 6, S6–S12 (2009)

    Article  Google Scholar 

  17. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation sequencing. Briefings Bioinform. 2, 473–483 (2010)

    Article  Google Scholar 

  18. Hatem, A., Bozdag, D., Toland, A.E., Catalyurek, U.V.: Benchmarking short sequence mapping tools. BMC Bioinform. 14, 184 (2013)

    Article  Google Scholar 

  19. Natarajan, S., KrishnaKumar, N., Pal, D., Nandy, S.K.: AccuRA: accurate alignment of short reads on scalable reconfigurable accelerators. In: Proceedings of IEEE International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS XVI), pp. 79–87, July 2016

    Google Scholar 

  20. Natarajan, S., KrishnaKumar, N., Pavan, M., Pal, D., Nandy, S.K.: ReneGENE-DP: accelerated parallel dynamic programming for genome informatics. In: Accepted at the 2018 International Conference on Electronics, Computing and Communication Technologies (IEEE CONECCT), March 2018

    Google Scholar 

  21. Liu, Y., Schmidt, B., Maskell, D.L.: CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28(14), 1830–1837 (2012)

    Article  Google Scholar 

  22. Liu, Y., Schmidt, B.: CUSHAW2-GPU: empowering faster gapped short-read alignment using GPU computing. IEEE Des. Test Comput. 31(1), 31–39 (2014)

    Article  Google Scholar 

  23. Homer, N., Merriman, B., Nelson, S.F.: BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4, e7767 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhi Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Natarajan, S., KrishnaKumar, N., Pal, D., Nandy, S.K. (2018). ReneGENE-GI: Empowering Precision Genomics with FPGAs on HPCs. In: Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2018. Lecture Notes in Computer Science(), vol 10824. Springer, Cham. https://doi.org/10.1007/978-3-319-78890-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78890-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78889-0

  • Online ISBN: 978-3-319-78890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics