Skip to main content

Locomotion Mode Classification Based on Support Vector Machines and Hip Joint Angles: A Feasibility Study for Applications in Wearable Robotics

  • Conference paper
  • First Online:
Human Friendly Robotics

Abstract

Intention decoding of locomotion-related activities covers an essential role in the control architecture of active orthotic devices for gait assistance. This work presents a subject-independent classification method, based on support vector machines, for the identification of locomotion-related activities, i.e. overground walking, ascending and descending stairs. The algorithm uses features extracted only from hip angles measured by joint encoders integrated on a lower-limb active orthosis for gait assistance. Different sets of features are tested in order to identify the configuration with better performance. The highest success rate (i.e. 99% of correct classification) is achieved using the maximum number of features, namely seven features. In future works the algorithm based on the identified set of features will be implemented on the real-time controller of the active pelvis orthosis and tested in activities of daily life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verghese, J., Levalley, A., Hall, C.B., Katz, M.J., Ambrose, A.F., Lipton, R.B.: Epidemiology of gait disorders in community-residing older adults. J. Am. Geriatr. Soc. 54, 255–261 (2006)

    Article  Google Scholar 

  2. World Health Organization: Global Health and Aging (2006). http://www.who.int/ageing/publications/globalhealth.pdf

  3. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, Hoboken (2008)

    Book  Google Scholar 

  4. Kobetic, R., To, C., Schnellenberger, J., Audu, M., Bulea, T., Gaudio, R., Pinault, G., Tashman, S., Triolo, R.J.: Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J. Rehabil. Res. Dev. 46(3), 447–462 (2009)

    Article  Google Scholar 

  5. Tucker, M.R., Olivier, J., Pagel, A., Bleuer, H., Bouri, M., Lambercy, O., Milln, J.R., Riener, R., Vallery, H., Gassert, R.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuroeng. Rehabil. 12(1) (2015)

    Article  Google Scholar 

  6. Novak, D., Riener, R.: A survey of sensor fusion methods in wearable robotics. Robot. Auton. Syst. 73, 155–170 (2015)

    Article  Google Scholar 

  7. Huang, H., Zhang, F., Hargrove, L.J., Dou, Z., Rogers, D.R., Englehart, K.B.: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed Eng. 58(10), 2867–2875 (2011)

    Article  Google Scholar 

  8. Gorsic, M., Kamnik, R., Ambrozic, L., Vitiello, N., Lefeber, D., Pasquinia, G., Munih, M.: Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors 14(2), 2776–2794 (2014)

    Article  Google Scholar 

  9. Ambrozic, L., Gorsic, M., Geeroms, J., Flynn, L., Molino, Lova R., Kamnkik, R., Munih, M., Vitiello, N.: CYBERLEGs: a user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robot. Autom. Mag. 21(4), 82–93 (2014)

    Article  Google Scholar 

  10. Yuan, K., Wang, Q., Wang, L.: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees. IEEE Trans. Mechatron. 20(2), 618–630 (2015)

    Article  Google Scholar 

  11. Chen, B., Wang, X., Huang, Y., Wei, K., Wang, Q.: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution. Mechatronics 32, 12–21 (2015)

    Article  Google Scholar 

  12. Sup, F., Varol, H.A., Goldfarb, M.: Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans. Neural Syst. Rehabil. 19(1), 71–78 (2011)

    Article  Google Scholar 

  13. Tkach, D.C., Hargrove, L.J.: Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for transtibial amputees. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3074–3077 (2013)

    Google Scholar 

  14. Young, A.J., Simon, A., Hargrove, L.J.: An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1587–1590 (2013)

    Google Scholar 

  15. Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., Yan, T., Lefeber, D., Vitiello, N.: A light-weight active orthosis for hip movement assistance. Robot. Auton. Syst. 73, 123–134 (2015)

    Article  Google Scholar 

  16. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 399–406 (1995)

    Google Scholar 

  17. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  18. Bevilacqua, V., Pannarale, P., Abbrescia, M., Cava, C., Paradiso, A., Tommasi, S.: Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression. BMC Bioinform. 13(7) (2012)

    Article  Google Scholar 

  19. Chen, P., Liu, S.: An improved DAG-SVM for multi-class classification. In: Proceedings of the 5th International Conference on Natural computation, pp. 460–462 (2009)

    Google Scholar 

  20. Geisser, S.: Predictive Inference. Chapman & Hall, London (1993)

    Book  Google Scholar 

  21. Parri, A., Yuan, K., Marconi, D., Yan, T., Munih, M., Molino Lova, R., Vitiello, N., Wang, Q.: Real-time hybrid ecological intention decoding for lower-limb wearable robots. IEEE Trans. Mechatron. (Accepted for publication)

    Google Scholar 

  22. Jang, J., Kim, K., Lee, J., Lim, B., Shim, Y.: Online gait task recognition algorithm for hip exoskeleton. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5327–5332 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the EU within the CYBERLEGs Plus Plus project (H2020-ICT-2016-1 Grant Agreement #731931) and in part by INAIL within the MOTU project (PPR-AI 1-2).

Andrea Parri, Simona Crea and Nicola Vitiello have commercial interests in IUVO s.r.l., a spin off company of Scuola Superiore SantAnna. Currently, the IP protecting the APO technology has been licensed to IUVO s.r.l. for commercial exploitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Papapicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papapicco, V., Parri, A., Martini, E., Bevilacqua, V., Crea, S., Vitiello, N. (2019). Locomotion Mode Classification Based on Support Vector Machines and Hip Joint Angles: A Feasibility Study for Applications in Wearable Robotics. In: Ficuciello, F., Ruggiero, F., Finzi, A. (eds) Human Friendly Robotics. Springer Proceedings in Advanced Robotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-89327-3_15

Download citation

Publish with us

Policies and ethics