Abstract
We investigate online convex optimization with switching costs (OCO; Lin et al., INFOCOM 2011), a natural online problem arising when rightsizing data centers: A server initially located at \(p_0\) on the real line is presented with an online sequence of non-negative convex functions \(f_1,f_2,\dots ,f_n: \mathbb {R}\rightarrow \mathbb {R}_+\). In response to each function \(f_i\), the server moves to a new position \(p_i\) on the real line, resulting in cost \(|p_i-p_{i-1}|+f_i(p_i)\). The total cost is the sum of costs of all steps. One is interested in designing competitive algorithms.
In this paper, we solve the problem in the classical sense: We give a lower bound of 2 on the competitive ratio of any possibly randomized online algorithm, matching the competitive ratio of previously known deterministic online algorithms (Andrew et al., COLT 2013/arXiv 2015; Bansal et al., APPROX 2015). It has been previously conjectured that \((2-\epsilon )\)-competitive algorithms exist for some \(\epsilon >0\) (Bansal et al., APPROX 2015).
A. Antoniadis—Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under AN 1262/1-1.
K. Schewior—Supported by CONICYT grant PCI PII 20150140 and the Millennium Nucleus Information and Coordination in Networks ICM/FIC RC130003.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrew, L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. In: Conference on Learning Theory (COLT), pp. 741–763 (2013)
Andrew, L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. CoRR, abs/1508.03769 (2015)
Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., Scquizzato, M.: Chasing convex bodies and functions. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 68–81. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49529-2_6
Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pp. 96–109 (2015)
Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)
Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. In: ACM Symposium on Theory of Computing (STOC), pp. 463–472 (2003)
Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39(4), 745–763 (1992)
Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32(6), 1403–1422 (2003)
Friedman, J., Linial, N.: On convex body chasing. Discret. Comput. Geom. 9, 293–321 (1993)
Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)
Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 77–119 (1988)
Lin, M., Liu, Z., Wierman, A., Andrew, L.H.: Online algorithms for geographical load balancing. In: International Green Computing Conference (IGCC), pp. 1–10 (2012)
Lin, M., Wierman, A., Andrew, L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391 (2013)
Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.H.: Greening geographical load balancing. IEEE/ACM Trans. Netw. 23(2), 657–671 (2015)
Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of the workload on the value of dynamic resizing in data centers. Perform. Eval. 85–86, 1–18 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Antoniadis, A., Schewior, K. (2018). A Tight Lower Bound for Online Convex Optimization with Switching Costs. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-89441-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-89440-9
Online ISBN: 978-3-319-89441-6
eBook Packages: Computer ScienceComputer Science (R0)