Skip to main content

On Approximability of Connected Path Vertex Cover

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10787))

Included in the following conference series:

Abstract

This paper is concerned with the approximation complexity of the Connected Path Vertex Cover problem. The problem is a connected variant of the more basic problem of path vertex cover; in k-Path Vertex Cover it is required to compute a minimum vertex set \(C\subseteq V\) in a given undirected graph \(G=(V,E)\) such that no path on k vertices remains when all the vertices in C are removed from G. Connected k-Path Vertex Cover (k-CPVC) additionally requires C to induce a connected subgraph in G.

Previously, k-CPVC in the unweighted case was known approximable within \(k^2\), or within k assuming that the girth of G is at least k, and no approximation results have been reported on the weighted case of general graphs. It will be shown that (1) unweighted k-CPVC is approximable within k without any assumption on graphs, and (2) weighted k-CPVC is as hard to approximate as the weighted set cover is, but approximable within \(1.35\ln n+3\) for \(k\le 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A related notion of proper matchings was used in [26].

References

  1. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour covers of a graph. Inf. Process. Lett. 47(6), 275–282 (1993). https://doi.org/10.1016/0020-0190(93)90072-H

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. In: Analysis and Design of Algorithms for Combinatorial Problems (Udine, 1982). North-Holland Mathematics Studies, vol. 109, pp. 27–45, North-Holland, Amsterdam (1985). https://doi.org/10.1016/S0304-0208(08)73101-3

  3. Brešar, B., Krivoš-Belluš, R., Semanišin, G., Šparl, P.: On the weighted \(k\)-path vertex cover problem. Discrete Appl. Math. 177, 14–18 (2014). https://doi.org/10.1016/j.dam.2014.05.042

    Article  MathSciNet  MATH  Google Scholar 

  4. Brešar, B., Jakovac, M., Katrenič, J., Semanišin, G., Taranenko, A.: On the vertex \(k\)-path cover. Discrete Appl. Math. 161(13–14), 1943–1949 (2013). https://doi.org/10.1016/j.dam.2013.02.024

    MathSciNet  MATH  Google Scholar 

  5. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum \(k\)-path vertex cover. Discrete Appl. Math. 159(12), 1189–1195 (2011). https://doi.org/10.1016/j.dam.2011.04.008

    Article  MathSciNet  MATH  Google Scholar 

  6. Camby, E., Cardinal, J., Chapelle, M., Fiorini, S., Joret, G.: A primal-dual \(3\)-approximation algorithm for hitting \(4\)-vertex paths. In: 9th International Colloquium on Graph Theory and Combinatorics (ICGT 2014), p. 61 (2014)

    Google Scholar 

  7. Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 33–42. ACM, New York (2002). https://doi.org/10.1145/509907.509915

  8. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998). https://doi.org/10.1145/285055.285059

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discrete Appl. Math. 86(2–3), 213–231 (1998). https://doi.org/10.1016/S0166-218X(98)00035-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujito, T.: On approximability of the independent/connected edge dominating set problems. Inf. Process. Lett. 79(6), 261–266 (2001). https://doi.org/10.1016/S0020-0190(01)00138-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977). https://doi.org/10.1137/0132071

    Article  MathSciNet  MATH  Google Scholar 

  12. Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner trees and connected dominating sets. Inf. Comput. 150(1), 57–74 (1999). https://doi.org/10.1006/inco.1998.2754

    Article  MathSciNet  MATH  Google Scholar 

  13. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002). https://doi.org/10.1137/S0097539700381097

    Article  MathSciNet  MATH  Google Scholar 

  14. Jakovac, M., Taranenko, A.: On the \(k\)-path vertex cover of some graph products. Discrete Math. 313(1), 94–100 (2013). https://doi.org/10.1016/j.disc.2012.09.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms 5(4), 8 (2009). https://doi.org/10.1145/1597036.1597045. Article 41

    Article  MathSciNet  MATH  Google Scholar 

  16. Kardoš, F., Katrenič, J., Schiermeyer, I.: On computing the minimum 3-path vertex cover and dissociation number of graphs. Theor. Comput. Sci. 412(50), 7009–7017 (2011). https://doi.org/10.1016/j.tcs.2011.09.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Khandekar, R., Kortsarz, G., Nutov, Z.: Approximating fault-tolerant group-Steiner problems. Theor. Comput. Sci. 416, 55–64 (2012). https://doi.org/10.1016/j.tcs.2011.08.021

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, E.: Partitioning a graph into small pieces with applications to path transversal. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1546–1558. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Google Scholar 

  19. Li, X., Zhang, Z., Huang, X.: Approximation algorithms for minimum (weight) connected \(k\)-path vertex cover. Discrete Appl. Math. 205, 101–108 (2016). https://doi.org/10.1016/j.dam.2015.12.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Lu, H., Wang, W., Wu, W.: PTAS for the minimum \(k\)-path connected vertex cover problem in unit disk graphs. J. Glob. Optim. 56(2), 449–458 (2013). https://doi.org/10.1007/s10898-011-9831-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inf. 22(1), 115–123 (1985). https://doi.org/10.1007/BF00290149

    Article  MathSciNet  MATH  Google Scholar 

  22. Naor, J., Panigrahi, D., Singh, M.: Online node-weighted Steiner tree and related problems. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science–FOCS 2011, pp. 210–219. IEEE Computer Society, Los Alamitos (2011). https://doi.org/10.1109/FOCS.2011.65

  23. Novotný, M.: Design and analysis of a generalized canvas protocol. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 106–121. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12368-9_8

    Chapter  Google Scholar 

  24. Orlovich, Y., Dolgui, A., Finke, G., Gordon, V., Werner, F.: The complexity of dissociation set problems in graphs. Discrete Appl. Math. 159(13), 1352–1366 (2011). https://doi.org/10.1016/j.dam.2011.04.023

    Article  MathSciNet  MATH  Google Scholar 

  25. Safina Devi, N., Mane, A.C., Mishra, S.: Computational complexity of minimum \(P_4\) vertex cover problem for regular and \(K_{1,4}\)-free graphs. Discrete Appl. Math. 184, 114–121 (2015). https://doi.org/10.1016/j.dam.2014.10.033

    Article  MathSciNet  MATH  Google Scholar 

  26. Savage, C.: Depth-first search and the vertex cover problem. Inf. Process. Lett. 14(5), 233–235 (1982). https://doi.org/10.1016/0020-0190(82)90022-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Tu, J.: A fixed-parameter algorithm for the vertex cover \(P_3\) problem. Inf. Process. Lett. 115(2), 96–99 (2015). https://doi.org/10.1016/j.ipl.2014.06.018

    Article  MathSciNet  MATH  Google Scholar 

  28. Tu, J., Yang, F.: The vertex cover \(P_3\) problem in cubic graphs. Inf. Process. Lett. 113(13), 481–485 (2013). https://doi.org/10.1016/j.ipl.2013.04.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Tu, J., Zhou, W.: A factor \(2\) approximation algorithm for the vertex cover \(P_3\) problem. Inf. Process. Lett. 111(14), 683–686 (2011). https://doi.org/10.1016/j.ipl.2011.04.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover \(P_3\) problem. Theor. Comput. Sci. 412(50), 7044–7048 (2011). https://doi.org/10.1016/j.tcs.2011.09.013

    Article  MathSciNet  MATH  Google Scholar 

  31. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981). https://doi.org/10.1137/0210022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees for a number of valuable comments and suggestions. This work is supported in part by JSPS KAKENHI under Grant Numbers 26330010 and 17K00013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Fujito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujito, T. (2018). On Approximability of Connected Path Vertex Cover. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89441-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89440-9

  • Online ISBN: 978-3-319-89441-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics