Skip to main content

Handling Critical Jobs Online: Deadline Scheduling and Convex-Body Chasing

  • Conference paper
  • First Online:
Operations Research Proceedings 2017

Part of the book series: Operations Research Proceedings ((ORP))

  • 1918 Accesses

Abstract

Completing possibly unforeseen tasks in a timely manner is vital for many real-world problems: For instance, in hospitals, emergency patients may come in and require to be treated, or self-driving cars need to avoid obstacles appearing on the street. Under the hard constraint of timely fulfilling these tasks, one still usually wishes to use resources conscientiously. We consider the above applications in the form of two fundamental mathematical problems. First, in online deadline scheduling, jobs arrive over time and need to scheduled on a machine until their deadline. Second, in convex-body chasing, an agent needs to immediately serve tasks located within convex regions and minimize the total travelled distance. In this paper we review the main results we obtained in the thesis of the same title: We present various novel online algorithms and techniques for analyzing them. Thereby we improve upon previously known bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, S., Garg, N., & Megow, N. (2011). Meeting deadlines: How much speed suffices? International Colloquium on Automata, Languages and Programming (ICALP) (pp. 232–243).

    Chapter  Google Scholar 

  2. Andrew, L. L. H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., & Wierman, A. (2013). A tale of two metrics: Simultaneous bounds on competitiveness and regret. In Conference on Learning Theory (COLT), 741–763.

    Google Scholar 

  3. Andrew, L. L. H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., & Wierman, A. (2015). A tale of two metrics: Simultaneous bounds on competitiveness and regret. CoRR. arXiv:1508.03769.

  4. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., & Scquizzato, M. (2016). Chasing convex bodies and functions. Latin American Theoretical Informatics Symposium (LATIN) (pp. 68–81).

    Chapter  Google Scholar 

  5. Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., & Stein, C. (2015). A 2-competitive algorithm for online convex optimization with switching costs. Workshop on approximation algorithms for combinatorial optimization problems (APPROX) (pp. 96–109).

    Google Scholar 

  6. Borodin, A., Linial, N., & Saks, M. E. (1992). An optimal on-line algorithm for metrical task system. Journal of the ACM, 39(4), 745–763.

    Article  Google Scholar 

  7. Chan, H., Lam, T. W., & To, K. (2005). Nonmigratory online deadline scheduling on multiprocessors. SIAM Journal on Computing, 34(3), 669–682.

    Article  Google Scholar 

  8. Chen, L., Megow, N., & Schewior, K. (2016). An \(\cal{O}(\log m)\)-competitive algorithm for online machine minimization. ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 155–163).

    Google Scholar 

  9. Chen, L., Megow, N., & Schewior, K. (2016). The power of migration in online machine minimization. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (pp. 175–184).

    Google Scholar 

  10. Dertouzos, M. L., & Mok, A. K. (1989). Multiprocessor on-line scheduling of hard-real-time tasks. IEEE Transactions on Software Engineering, 15(12), 1497–1506.

    Article  Google Scholar 

  11. Friedman, J., & Linial, N. (1993). On convex body chasing. Discrete & Computational Geometry, 9, 293–321.

    Article  Google Scholar 

  12. Kalyanasundaram, B., & Pruhs, K. (2001). Eliminating migration in multi-processor scheduling. Journal of Algorithms, 38(1), 2–24.

    Article  Google Scholar 

  13. Karlin, A. R., Manasse, M. S., Rudolph, L., & Sleator, D. D. (1988). Competitive snoopy caching. Algorithmica, 3, 77–119.

    Article  Google Scholar 

  14. Lam, T. W., & To, K.-K. (1999). Trade-offs between speed and processor in hard-deadline scheduling. CM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 623–632).

    Google Scholar 

  15. Phillips, C. A., Stein, C., Torng, E., & Wein, J. (2002). Optimal time-critical scheduling via resource augmentation. Algorithmica, 32(2), 163–200.

    Article  Google Scholar 

  16. Schewior, K. (2016). Handling critical tasks online: Deadline scheduling and convex-body chasing. Dissertation, Technische Universität Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Schewior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schewior, K. (2018). Handling Critical Jobs Online: Deadline Scheduling and Convex-Body Chasing. In: Kliewer, N., Ehmke, J., Borndörfer, R. (eds) Operations Research Proceedings 2017. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-89920-6_4

Download citation

Publish with us

Policies and ethics