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Abstract

Bilevel problems are mathematical programming problems where the decision takers are

devided into a leader and a follower. The objective function of the leader depends on

the decision of the follower, who pursues a different objective and whose feasible region

depends on the leader’s decision. Bilevel problems appear in hierachical or decentralized

decision structures and have applications in many areas like Stackelberg games, produc-

tion planning or network design. However, exact solution methods for bilevel problems

are still scarce in the literature. This thesis proposes a Benders decomposition algorithm

to solve discrete-continuous bilevel problems to optimality. The efficiency of the method

is shown on existing problems from the literature - namely the Discrete Network Design

Problem, the Decentralized Facility Selection Problem and the Hazmat Transport Net-

work Design Problem. Depending on the problem structure, the convergence of Benders

decomposition is improved by using the multi-cut version or pareto-optimal cuts. For

the Discrete Network Design Problem, a linearization of the convex objective function

without introducing binary decision variables is shown and the run time is impoved by

more than 60% compared to the mixed-integer linear program. Moreover, the Discrete

Network Design Problem is extended to a multi-period model for planning maintenance

work in traffic networks. Further, we show on the Decentralized Facility Selection Prob-

lem and on the Hazmat Transport Network Design Problem run time improvements of

more than 90% compared to the mixed-integer linear program. To include risk equity in

hazardous material shipment, a population-based risk definition is introduced and the

Hazmat Transport Network Design Problem is extended to a multi-mode model. The

numerical results show a better distribution of risk compared to classical models in the

literature and a convex relation between risk equilibration and risk minimization.
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Chapter 1

Introduction

1.1 Motivation

Transportation has a huge impact on everyone’s daily life: Many commuters are using

public transportation systems or their own car and goods are shipped all over the world

to satisfy customer demand. This leads to congested cities and highways as well as

a deterioration of the network. Therefore, the improvement and regulation of traffic

networks is very important for society.

Recently, the Federal Ministry of Transport and Digital Infrastructure of Germany

presented the first draft of the 2030 Federal Transport Infrastructure Plan (BMVI, 2016).

This plan aims at selecting and prioritizing projects for the federal trunk roads, the

federal railway infrastructure and the federal waterway sector to improve the mobility

in passenger traffic and to guarantee freight transportation. Besides these major goals,

the improvement of safety, the reduction of emissions, the limitation of use of nature,

the conservation of nature and the improvement of the quality of life are also covered.

For the realization, very restrictive budget constraints with a total investment of 264.5

billion Euro apply. About 69% of this budget will be used for maintenance to preserve

the current network. The rest is used to build new and upgrade existing infrastructure

to avoid and reduce bottlenecks until 2030.

The study is based on the forecast of transport interconnectivity 2030 (BMVI, 2014b).

The transport performance of passenger transport will increase about 12.2% from 1,184

billion pkm (passenger-kilometer) in 2010 to 1,329 billion pkm in 2030. This growth is

mostly driven by the increase of long-distance travelling, since the traffic volume will

only increase by 1.2% to 103 billion passengers.

In freight transportation, the expected growth of demand is even higher. The trans-

port performance within the territory of Germany will rise by 38% (from 607.1 billion

1



Chapter 1 Introduction

tkm (ton-kilometer) to 837.6 billion tkm) and the traffic volume by 18% (3,704.7 mil-

lion tons to 4,358.4 million tons) between 2010 and 2030. In particular, the transport

performance of rail transportation will increase by 42.9%. (BMVI, 2014b)

One consequence of the huge amount of traffic is congested cities. TomTom (2016)

showed in its annual traffic index that in the most congested cities in the world (Mexico

City, Bangkok and Istanbul), the average travel time is 59%, 57% and 50% higher than

in a traffic free network. In the morning and evening peak, the number even goes up to

97%, 85% and 62%. But also in Europe this so-called congestion level goes up to 44%

(Moscow) while in the four most congested German cities (Hamburg, Cologne, Munich,

Berlin) the additional travel time is on average between 30% and 28%.

The predicted increase in traffic shows that the federal transport infrastructure needs

to be adjusted and the most improving projects should be selected. The Federal Trans-

port Infrastructure Plan includes more than 2,000 projects for expanding the different

transportation modes. But also the local networks, which are not part of the Federal

Transport Infrastructure Plan, need to be expanded. In 2015 and 2016, Munich planned

with 600 construction zones in the traffic network each year (Schmidt and Karowski,

2016; Völklein, 2015). In Berlin in 2015, more than 2,500 construction zones were

planned (Huth, 2015). This number is supposed to increase in 2016 and 2017 (Neu-

mann, 2016).

These construction sites will further reduce the capacity of the network during main-

tenance phases, which can lead to even more congestion. This will especially be true

if too many projects are scheduled in one area and a city struggles with congestion in

general.

One special case in freight transportation is hazardous material (hazmat) shipment.

In 2013, 14% of the transported volume in Germany were dangerous goods of which

47% were transported on the road, 20% by train and about 16.5% each were shipped

on inland waterways and the sea (Statistisches Bundesamt Wiesbaden, 2015). Even

though technical advances can reduce the risk of hazardous accidents, the risk should

additionally be reduced by choosing transportation paths with a lower risk, since the

consequences of hazardous accidents are truly fear-inspiring. Moreover, citizens demand

more and more often that the risk is also fairly distributed and not some specific parts

of the population take all the risk.

2



1.2 Problem statement

1.2 Problem statement

Because of the high increase in traffic and since most authorities have a tight budget

for improving their network, it is even more important to use this budget efficiently

when expanding the network and, further, to regulate the transport of dangerous goods

in order to reduce risks. These problems are called network design problems. They

have a hierarchical structure in common where the users of the network only want

to minimize their own travel time or costs. But the authorities want to regulate the

traffic to minimize the overall congestion (e.g. LeBlanc, 1975) or to reduce the risk of

dangerous good accidents (e.g. Kara and Verter, 2004). Since these two objectives do

not necessarily correspond, the decision taking authorities (also called leader) have to

anticipate the reaction of the user (also called follower). These problems are formulated

as bilevel problems (Schneeweiß, 2003). In bilevel programming, the leader optimizes his

objective function subject to a nested optimization problem: the optimization problem

of the follower. However, optimal solution methods for bilevel problems are scarce. Most

of the optimal approaches date back to the beginning of bilevel programming (e.g. Bard

and Moore, 1990; Hansen et al., 1992) and so far the literature had a stronger focus on

heuristics and metaheuristics.

The literature on traffic network design problems still mainly focusses on the Dis-

crete Network Design Problem (e.g. LeBlanc, 1975), which deals with possible network

extensions, even though maintenance is becoming more and more important. This is

also reflected in the budget share for maintenance in the current Federal Transport

Infrastructure Plan (BMVI, 2016).

In hazmat shipments, risk minimization is the main objective of most of the models

so far (e.g. Kara and Verter, 2004). In the Hazmat Transport Network Design Problem,

the leader decides which roads of a network allow dangerous goods shipments to reduce

the total risk in the network. Even though some researchers already pointed out that

risk equilibration needs to be considered (e.g. Erkut et al., 2007), so far only a few

publications in this direction exist (Bianco et al., 2009, 2015). These ideas distribute

the risk fair among arcs, but neglect that different transportation modes need to be

considered. The resulting distribution, however, is generally not fair with respect to the

population.

This thesis contributes to the literature by addressing these methodological challenges:

1. How to solve linear bilevel problems with discrete leader variables efficiently to

optimality?

3



Chapter 1 Introduction

2. How to approximate the non-linear Discrete Network Design Problem to a linear

bilevel problem without additional binary variables?

3. How to model a maintenance problem as a bilevel problem and solve it?

4. How to use the multiple follower structure in the Hazmat Transport Network

Design Problem to solve it efficiently?

5. How to model hazardous material risk for fair distribution?

Using these methodological advances, the following research questions will be ad-

dressed in this thesis and shall support the responsible authorities in their decision:

1. How can a bilevel model for maintenance planning improve the use of the budget

to reduce congestion compared to practical heuristics?

2. Why is it important to consider different modes in the Hazmat Transport Network

Design Problem?

3. What is the trade-off between risk minimization and risk equilibration?

1.3 Structure of the thesis

The remainder of this thesis is structured as follows.

In Chapter 2, we first review the literature on bilevel programming and Benders

decomposition (BD). After that, we summarize related work on traffic network design,

decentralized production planning and hazardous material shipment.

We will then introduce a new method for solving linear bilevel problems (LBPs) with

binary leader variables and continuous follower variables in Chapter 3. The bilevel

formulation is transformed into a mixed-integer linear program (MILP) by using the

Karush-Kuhn-Tucker (KKT) conditions and by linearizing bilinear terms. The resulting

MILP is further solved with BD. Moreover, we introduce a new formulation of the

Discrete Network Design Problem (DNDP), which approximates the non-linear objective

functions by piecewise linear terms without introducing binary auxiliary variables. The

BD approach is tested on the DNDP and the computational benefits are discussed in

the results. This chapter is based on (Fontaine and Minner, 2014).

In Chapter 4, we introduce a new model for traffic maintenance planning by extending

the model of the previous chapter to a multi-period model. The problem is solved with

4



1.3 Structure of the thesis

a multi-cut version of the BD of Chapter 3. In a numerical study, we show that this

method finds good solutions faster than a genetic algorithm and simple greedy heuristics

that might be used in practice. This chapter is based on (Fontaine and Minner, 2016a).

Chapter 5 shows the efficiency of the BD algorithm of Chapter 3 for the Decentralized

Capacitated Facility Selection Problem (DCFSP). This chapter is based on (Fontaine

and Minner, 2016b).

In Chapter 6, we apply the multi-cut BD to the Hazmat Transport Network Design

Problem (HTNDP). In the results, we show run time improvements of 90% and the

importance of using a bilevel formulation. This chapter is based on (Fontaine and

Minner, 2016c).

In Chapter 7, we fairly distribute the risk of hazardous accidents among the pop-

ulation. Therefore, we introduce a population-based risk definition and equilibration

objective functions. Moreover, the HTNDP is extended to a multi-mode network design

problem. The numerical results show that the new definitions are necessary and different

transportation modes need to be considered whenever risk should be spread fairly. This

is joined work with Stefan Minner (Technical Univerisity of Munich), Teodor Gabriel

Crainic (University of Quebec in Montreal) and Michel Gendreau (University of Mon-

treal) and is based on (Fontaine et al., 2016).

The thesis ends with a conclusion and an outlook for possible future research.
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Chapter 2

Fundamentals and literature

In this chapter, we will first summarize the methodological fundamentals and the re-

lated literature of bilevel programming and Benders decomposition, which are the two

main methodological concepts of this thesis. Subsequently, we will review the literature

of the Discrete Network Design Problems, decentralized production environments and

hazardous material shipment - the applications of the newly introduced methods.

2.1 Bilevel programming

The idea of bilevel programming goes back to the introduction of Stackelberg games in

Stackelberg (1934) and defines hierarchical or decentralized decision problems (Schnee-

weiß, 2003). The decision makers are divided into a so-called leader and a so-called

follower while both are optimizing their own objective function. Because of the hierar-

chical decision structure, the leader decides subject to a nested optimization problem

- the so-called follower problem. The feasible region of this follower problem depends

on the leader decision and the leader objective depends on the decision of the follower.

They can cover a broad range of applications, not only in traffic network design (e.g.

LeBlanc, 1975) and the HTNDP (e.g. Kara and Verter, 2004), where our research is

located, but also, for example, in finding chemical equilibria (Bard, 1998), defining tolls

in a network (Labbé et al., 1998) or competitive facility location problems (Eiselt and

Laporte, 1997). For a detailed summary of applications and an introduction into bilevel

programming, the reader is referred to the books of Bard (1998), Dempe (2002), Dempe

et al. (2015), Migdalas et al. (2013) and Talbi (2013) and surveys by Colson et al. (2005)

and Colson et al. (2007).

Bilevel problems are nondifferentiable and nonconvex optimization problems (Dempe

et al., 2015) and difficult to solve. Ben-Ayed and Blair (1990) showed that even the linear

7
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case with continuous decision variables is NP-hard. The first mathematical formulation

was introduced by Bracken and McGill (1973) and since then many applications and

solution methods were developed in the literature. Depending on the solution space

of the follower problem, assumptions about the cooperation level between follower and

leader are needed. If the follower problem has more than one optimal solution, these

solutions can have different impacts on the objective value of the leader. The two mostly

used definitions are the optimistic bilevel problem and the pessimistic bilevel problem.

In the optimistic case, the leader assumes that the follower chooses the solution among

all optimal follower solutions, which is the best for the leader. This is also called the

weak bilevel programming problem. On the other hand, in the pessimistic case, the

leader assumes that the follower takes the worst case decision: the one follower solution

out of all the optimal follower decisions that results in the worst objective value of the

leader. This is called the strong bilevel programming problem. If no cooperation can

be assumed, the pessimistic approach gives a solution that limits the damage (Dempe,

2002). In case of a unique lower level solution for all leader decisions, the optimistic and

the pessimistic case return the same solution.

In this thesis, we will focus on LBPs with discrete leader variables and continuous

follower variables. But since many solution methods for solving LBPs for continuous

leader variables can be easily adapted for solving discrete-continuous linear bilevel prob-

lems (DCLBPs), we will review the methods for the general case. The first methods

(Bard and Falk, 1982; Candler and Townsley, 1982) were based on enumeration strate-

gies. Later, Bialas and Karwan (1984) proposed the Kth best method for solving the

optimistic LBPs. This method starts with the solution of the single level problem that

ignores the objective of the follower. From this vertex, neighbor vertices are explored

until the global optimal solution is found.

Other approaches are based on the KKT conditions. If the follower problem has

a unique solution or an optimistic problem formulation is used, these conditions are

not only necessary optimality conditions, but also sufficient (Dempe, 2002). In 1990,

Bard and Moore replaced the follower problem with the KKT conditions. The resulting

problem was solved in a branch-and bound framework without the bilinear term in the

complementary slackness conditions. As long as the complementary slackness conditions

were not satisfied, a new branch was evaluated. A modification for the mixed-integer

LBP was shown in Moore and Bard (1990). A second branch-and-bound algorithm,

which branches on binding follower constraints, was proposed by Hansen et al. (1992).

Besides that, also penalty function methods, which add the duality gap to the objective
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function, were introduced (White and Anandalingam, 1993).

Saharidis and Ierapetritou (2009) proposed an algorithm based on BD (see Section

2.2) for the DCLBP. Their algorithm solves a MILP both in the master problem and

in the slave problem as an LBP is solved in the slave problem by using the Active

Constraint Strategy by Grossmann and Floudas (1987).

2.2 Benders decomposition

BD was introduced in 1962 by Benders and is nowadays one of the most used solution

methods for solving large-scale mixed-integer programs (MIPs). However, BD also has

a wide range of applications in stochastic programming, where it is more common un-

der the L-Shaped method (Van Slyke and Wets, 1969), and in non-linear optimization

(Geoffrion, 1972).

The general idea of BD is to decompose the problem into two easier problems - the

master problem and the slave problem - and solve these problems repeatedly until con-

vergence is reached. Let y and x be two sets of decision variables. From now on, we

will refer to y as complicating variables and to x as easy variables. The complicating

variables can be integer or continuous and further restricted with a set of constraints.

Both will be included in the constraint set y ∈ Y . The easy variales x need to be con-

tinuous and w.l.o.g. x ≥ 0. With A and B being constraint matrices, b the right hand

side and c and f the objective function coefficients, a generic MILP can be defined as

follows (Martin, 1999):

min f>y + c>x (2.1)

s.t. Ax+By ≥ b (2.2)

y ∈ Y (2.3)

x ≥ 0 (2.4)

By fixing the complicating variables y = y∗, the optimal decision for x can be determined

by solving the following subproblem SP (y):

min c>x (2.5)

s.t. Ax ≥ b−By∗ (2.6)

x ≥ 0 (2.7)

9
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With u being the dual variables to the constraints (2.6), the dual subproblem DSP (y)

is defined as follows:

max u>(b−By∗) (2.8)

s.t. u>A ≤ c (2.9)

u ≥ 0 (2.10)

We assume that the feasible region of the DSP (y) is not empty. Otherwise the generic

MILP is unbounded or infeasible. With that assumption, the solution space of DSP (y)

can be defined by its extreme points pi, i = 1, .., I and extreme rays qj, j = 1, .., J .

As the solution space does not depend on y, the generic MILP can be reformulated as

follows:

min f>y + z (2.11)

s.t. p>i (b−By∗) ≥ z ∀i = 1, ..., I (2.12)

q>j (b−By∗) ≥ 0 ∀j = 1, ..., J (2.13)

y ∈ Y (2.14)

z ∈ R (2.15)

Constraints (2.12) define the Benders optimality cuts and constraints (2.13) the Benders

feasibility cuts. Instead of calculating all extreme points and extreme rays of DSP (y),

a relaxed master problem (RMP ) (2.11), (2.14) and (2.15) is solved in each iteration.

With the solution of the master problem, the dual subproblem is solved and, if the

dual subproblem is unbounded, a feasibility cut (2.13) is added to the relaxed master

problem, whereas, if it is bounded, an optimality cut (2.12) is added. Moreover, if the

subproblem is bounded, the objective value gives a new feasible solution and a potential

new upper bound znewup . Each objective value of the master problem gives a new lower

bound zlow and the algorithm ends with the optimal solution as soon as the lower and

upper bound zup are equal. The method is outlined in Algorithm 1.

As the convergence of the classical BD can be very slow and solving the RMP can be

very difficult, several strategies for improving the algorithm have been proposed. If the

RMP is difficult to solve, optimality cuts and feasibility cuts can also be generated by

solving the RMP not to optimality during a first phase (Geoffrion and Graves, 1974)

or even by solving it heuristically (Cote and Laughton, 1984). Moreover, Rei et al.

(2009) proposed local branching in the master problem to generate multiple cuts in one
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Algorithm 1: Benders decomposition

Create RMP without constraints (2.12) and (2.13);
Set zlow ← −∞, zup ←∞ while zup > zlow do

solve RMP → y∗, zlow;
solve DSP (y∗) → znewup ;

if DSP bounded then
add optimality cut to RMP ;
if znewup < zup then zup ← znewup ;

else
add feasibility cut to RMP ;

end

end

iteration and showed significant run time improvements.

A second problem of the classical BD can be the generation of weak cuts in the

subproblem. To address this issue, Magnanti and Wong (1981) proposed a method to

generate non-dominated optimality cuts which show large improvements in reducing

the number of iterations in many cases. Further acceleration ideas for these cuts were

proposed by Papadakos (2008) and Sherali and Lunday (2013).

Besides the classical cuts, Codato and Fischetti (2004) proposed combinatorial cuts

to reduce the number of iterations.

2.3 Discrete Network Design Problem

Road Network Design Problems are one application of bilevel programming. In the lower

level problem, the travelers can decide on their road in a network. The most used lower

level model is the Traffic Assignment Problem (Sheffi, 1985), where the resulting flow

pattern is a user equilibrium. The travel demand is represented by an origin-destination

(OD) matrix that defines how many users want to travel from their origin to their

destination. Each traveler wants to minimize its own travel time and no cooperation

is assumed between the travelers. In this equilibrium, no traveler can improve its own

travel time by switching to another route (Wardrop, 1952).

The upper level is a design problem: The leader wants to minimize - compared to

the follower - the total travel time in the network, which is called the system-optimum.

Braess (1968) showed that the system-optimum and the follower-optimum are not nec-

essary the same and therefore a bilevel formulation is needed. To improve the network,

11



Chapter 2 Fundamentals and literature

the leader can add new links or capacity to existing links in a network to minimize the

overall congestion in the network. The first one is the DNDP, the latter one the Contin-

uous Network Design Problem (CNDP). The combination of both is the Mixed Network

Design Problem (MNDP). Farahani et al. (2013) summarized the existing models of

urban transportation planning and gave a survey on existing solution methods.

Even though the focus of this thesis is the DNDP, we also want to give a short

summary of the other two cases. Abdulaal and LeBlanc (1979) introduced the CNDP

with user equilibrium and presented a direct search algorithm. Suh and Kim (1992)

presented a descent algorithm for non-linear bilevel problems. Due to the complexity of

the problem, many metaheuristics were proposed in the literature. Friesz et al. (1992,

1993) and Meng and Yang (2002) used simulated annealing procedures and Xu et al.

(2009) and Mathew and Sharma (2009) used genetic algorithms for solving the problem.

Wang and Lo (2010) transformed the bilevel problem into a MILP by transforming the

equilibrium constraints into mixed-integer constraints and linearizing the travel time

function.

The DNDP with user equilibrium, which is a more difficult problem, was first in-

troduced by LeBlanc (1975) and solved with a branch-and-bound method. Poorzahedy

and Turnquist (1982) solved the Traffic Assignment Problem (TAP) and let the followers

decide over the new links in the network. This formulation was solved in a branch-and-

bound framework. Moreover, an approximated lower bound was used in a branch-and-

bound based heuristic. Gao et al. (2005) proposed a generalized BD approach with the

use of support functions for the bilevel formulation. Luathep et al. (2011) used the vari-

ational inequality problem of the follower problem to formulate the problem as a MILP.

The non-linear travel time function was approximated with piecewise linear terms and

bilinear terms were relaxed by introducing binary auxiliary variables. Instead of using

variational inequalities, Farvaresh and Sepehri (2011) transformed the problem into a

non-linear mixed-integer program by using the KKT conditions and binary auxiliary

variables were used to linearize this formulation. Moreover, Wang et al. (2013) used the

relation between the leader and the follower objective for a global optimization method.

Metaheuristics were also used to solve larger and real-sized instances for the DNDP.

Besides ant colony systems (Poorzahedy and Abulghasemi, 2005), hybrid metaheuristics

based on tabu search, simulated annealing and a genetic algorithm (Poorzahedy and

Rouhani, 2007) were proposed. The authors showed that the hybrid performs even

better than what they introduced in their previous work.

Traffic Network Design Problems with a planning horizon over several periods for
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maintenance planning are scarce in the literature. Only Ng et al. (2009) proposed a

genetic algorithm for maintenance planning which solves a mesoscopic traffic simulation

in the follower problem. However, for a network of 13 nodes and 24 arcs, a run time of

about 2 days has been reported.

2.4 Decentralized Capacitated Facility Selection

Problem

Decentralized production and distribution planning is another application for bilevel

programming. These models are tailored to one specific setting and therefore vary signif-

icantly with every setting. Cao and Chen (2006) formulated a decentralized production

selection problem as a bilevel problem and named it the DCFSP. The principal firm is

the leader who decides on opening facilities for production while minimizing plant open-

ing costs and opportunity costs for unused production capacities. The opened plants

minimize the production-related operational costs and satisfy the demand restricted by

their own capacity. The production plan is done independently from the principal firm.

However, coordination among the plants is assumed. The LBP is transformed into a

MILP and applied to small instances with up to six facilities and eight products.

Calvete et al. (2011) proposed a bilevel model for production and distribution plan-

ning. The leader is represented by a distribution company with several depots. This

company wants to minimize the transportation costs and the costs for acquiring a prod-

uct from the production plants to the depot subject to a multi-depot vehicle routing

problem with a homogeneous fleet. After knowing the demand of each depot, the fol-

lower – the production company – assigns the demand of the depots to a set of their own

plants while minimizing operational costs. The authors used an ant colony metaheuristic

to solve the problem.

In 2014, Calvete et al. proposed a bilevel formulation for decentralized distribution

network planning. Compared with the previous work, the leader can now decide whether

to open a depot or not. However, the distribution is done with direct shipments as in

a classical transportation problem. Besides the transportation costs from the depot to

the customer, the leader minimizes the depot opening costs and the transportation costs

from the plant to the depot. The follower reacts on the demand of each depot and

minimizes the operational costs while assigning production quantities from each plant

to the depots to satisfy the depots’ demand. As the problem is difficult to solve to
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optimality, they proposed a genetic algorithm for solving larger instances.

2.5 Hazardous material transportation

Research about hazmat transportation started around thirty years ago. Erkut et al.

(2007) give a very detailed introduction into the topic and summarize the literature.

They identify four main streams in the literature:

• risk assessment

• routing

• combined facility location and routing

• network design

Since we focus on a new solution method for solving the HTNDP and a new risk definition

of the HTNDP, we will review the literature of the first and last stream. For details on

the other two streams, the interested reader is referred to Erkut et al. (2007).

2.5.1 Risk assessment

When transporting hazardous materials (also called dangerous goods), more than just

the traditional factors, e.g. transportation time, transportation costs, and environmental

aspects like CO2 emissions have to be considered. One also has to consider the risk of

potential accidents and the consequences of these accidents. The economic effects of an

hazmat accident can be divided into seven categories (Abkowitz et al., 2001):

• injuries and fatalities

• cleanup costs

• property damage

• evacuation

• product loss

• traffic incident delay

• environmental damage

The costs of injuries and fatalities are often also known as population exposure and used

for assessing the risk of hazmat transport. The risk of shipping one unit on an arc is then

the product of the probability of an accident on that arc and the exposed population

(e.g. Batta and Chiu, 1988; Erkut and Verter, 1998). This is called the traditional risk.

Besides the traditional risk, various other risk measures have been proposed over the
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last years. The population exposure (Batta and Chiu, 1988) ignores the probability

of an accident and just sums over the exposed populations. In contrast, the incident

probability sums only over the accident probabilities (Saccomanno and Chan, 1985).

Especially for evaluating the risk on a path, further advanced risk measures have been

proposed (Erkut et al., 2007). To include the fact that the population might not be

risk-neutral and favor a higher probability of a low-consequences accident over a lower

probability with high consequences, Abkowitz et al. (1992) introduced the perceived risk.

The exposed population is exponentiated with a risk preference. If this risk preference is

greater than 1, a risk averse population is assumed, if it is 1, the population is risk neutral

and if it is smaller than 1, the population is risk prone. All these measures focused on

risk minimization. However, a few works in the area of hazardous material routing also

focused on a fair distribution of risk. Gopalan et al. (1990) proposed a shortest-path

problem for routing the trucks that minimizes the total risk and ensures risk equity

between zones by a constraint. However, this model ignores the fact that the carrier’s

main goal is to minimize the costs. Lindner-Dutton et al. (1991) extended this model

and further include the sequencing of the trucks, to have a fair distribution at every

point and not over the whole planning horizon. Carotenuto et al. (2007) defined a MILP

to find minimal and equitable risk routes for hazardous material shipment. This fair risk

distribution is done by distributing it equally among the arcs. The problem is solved

by a modified k-shortest path algorithm. All these definitions assume independent risk

probabilities per road segment. Kara et al. (2003) proposed a method to evaluate the risk

on a path accurately. However, Erkut and Verter (1998) showed that the approximation

error of the independent risk assumption is small.

A second factor of this risk definition is the calculation of the exposed population.

Depending on the transported dangerous good but also on other factors like topology,

weather and wind, different impact shapes were proposed in the literature. Figure 2.1

illustrates four different shapes: The first three figures are very closely related to each

other. The danger circle (e.g. Erkut and Verter, 1998) has a hazmat depending radius

with the center at the accident location. If this circle is moved along the edge, it

yields the fixed bandwidth approximation (e.g. ReVelle et al., 1991). By cutting off the

semicircles at the end of the fixed bandwidth, one gets the rectangle approximation (e.g.

ALK Associates, 1994). All these models assume that the impact of an accident is the

same for every person within the danger area without depending on the distance to the

origin of the accident. Since the impact of an airborne hazmat is significantly different

from all others, Patel and Horowitz (1994) used the Gaussian plume model to express
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the consequence of such an incident.

(a) Danger circle

(b) Fixed bandwidth

(c) Rectangle (d) Gaussian plume

Figure 2.1: Possible impact shapes along a route segment (adapted from Erkut et al.,
2007)

2.5.2 Network design

The network design problem is typically represented as a bilevel model to reflect the dif-

ferent interests of authorities and carriers. The government or authorities (the leader)

want to regulate the transportation of dangerous goods to reduce the risk for the pop-

ulation. This can be done either by forbidding parts of the transportation network

for hazmat transportation (e.g. Kara and Verter, 2004) or by introducing tolls for the

transportation of dangerous goods (e.g. Marcotte et al., 2009). The followers are the

carriers who need to ship their demand through the network. They want to minimize

their transportation costs and therefore the follower problem is modelled as a shortest

path problem.

The literature on the HTNDP is rather scarce. The first bilevel formulation was

introduced by Kara and Verter (2004). Their model was transformed into a single-level

mixed-integer program by using KKT conditions for the follower problem and solved

with a commercial solver. In (Verter and Kara, 2008), a path-based formulation is

proposed for solving the problem more efficiently. Erkut and Alp (2007) propose a

method that creates a hazardous material network out of a tree-structured subset of

the existing transportation network. This solution is used in a path-addition heuristic.

An authority can decide whether to reduce costs or increase the risk by adding more

allowed arcs to the network. All these approaches used the optimistic case of the bilevel

problem where the carrier uses the route with the lowest risk if several routes cost the

same. These solutions are called unstable and Erkut and Gzara (2008) proposed a
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heuristic that generates stable solutions for the HTNDP. Further, a stable MILP was

introduced by Amaldi et al. (2011). To also distribute the risk fairly, Bianco et al.

(2009) introduced a bilevel model that not only minimizes the total risk in the network,

but also the maximum risk over all arcs. This idea was also used in a game-theoretic

approach for the fair distribution of risk by Bianco et al. (2015). To calculate a Nash-

equilibrium, they used a local search heuristic not only to minimize the total risk but

also to equilibrate the risk by looking at the maximum risk on an arc. This approach

is further restricted to one hazmat type and the authors pointed out that an extension

makes the problem much harder as the Nash game is not convex anymore. Recently,

Sun et al. (2015) proposed a network design model that includes risk uncertainty in the

decision.
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Benders decomposition for

discrete-continuous linear bilevel

problems with application to traffic

network design

We propose a new fast solution method for linear bilevel problems with binary leader and

continuous follower variables under the partial cooperation assumption. We reformulate

the bilevel problem into a single-level problem by using the Karush-Kuhn-Tucker condi-

tions. This non-linear model can be linearized because of the special structure achieved

by the binary leader decision variables and subsequently solved by a Benders decompo-

sition Algorithm to global optimality. We illustrate the capability of the approach on

the Discrete Network Design Problem which adds arcs to an existing road network at

the leader stage and anticipates the traffic equilibrium for the follower stage. Because

of the non-linear objective functions of this problem, we use a linearization method for

increasing, convex and non-linear functions based on continuous variables. Numerical

tests show that this algorithm can solve even large instances of bilevel problems.

3.1 Introduction

As we are facing increasing population in cities, the demand for transportation increases.

This leads to more congested roads and longer travel times. Moreover, congestions lead

to air pollution, noise pollution and a lower quality of living. Therefore, traffic networks

have to be expanded and an efficient usage of the budget in network expansions should

be achieved. In the literature, these problems are addressed as bilevel problems (e.g.
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Farahani et al., 2013; Gao et al., 2005; LeBlanc, 1975; Luathep et al., 2011; Poorzahedy

and Turnquist, 1982).

Besides the contribution to solve considerably larger instances of DCLBPs, we present

a formulation of the Discrete Network Design Problem which approximates the non-

linear convex objective functions only by piecewise linear terms (without additional

binary variables) and can be solved by our algorithm. Compared to Luathep et al. (2011)

and Farvaresh and Sepehri (2011), we avoid introducing binary auxiliary variables and

the relaxation of bilinear terms. Because of the very small number of binary variables,

the MILP formulation of the DNDP has computational benefits and we can solve even

large instances for the DNDP. We further show how to accelerate the run time of the

slave problem.

The remainder of this chapter is structured as follows. First, we introduce the general

LBP and our algorithm in Section 3.2. Section 3.3 introduces the bilevel formulation of

the DNDP and shows the linearization. In Section 3.4, we evaluate the performance of

the algorithm on several instances and end with a summary of the proposed procedure,

results and outline some future research opportunities.

3.2 Bilevel problem and algorithm

Section 3.2.1 shows the transformation of the DCLBP into a single-level MILP and BD

is applied in Section 3.2.2.

3.2.1 Transformation to a single-level problem

In the following, we introduce the general formulation for the DCLBP. The leader vari-

ables are given by yi for all i ∈ I with I the corresponding set of indices and the follower

variables by xj for all j ∈ J with J the corresponding set. (3.1) shows the leader objec-

tive function with f ′i ∈ R for all i ∈ I and fj for all j ∈ J ∈ R the objective coefficients.

The follower problem is represented by (3.2) - (3.4) with the follower objective function

in (3.2) and the follower objective coefficients cj ∈ R for all j ∈ J . K is the set of

follower constraints in (3.3), where each constraint k ∈ K is defined by its coefficients

akj ∈ R for all i ∈ I, a′kj ∈ R for all j ∈ J and the right hand side bk. For simplification,

we omit constraints in the leader main problem, but the following transformations can

all be applied to the more general formulation. Moreover, we assume the partial coop-

eration assumption (Bialas and Karwan, 1984; Dempe, 2002) - also called an optimistic
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DCLBP. This allows the leader to select an optimal follower decision among all optimal

follower decisions if there exists more than one.

min
y

zL(y, x) =
∑
i∈I

f ′iyi +
∑
j∈J

fjxj (3.1)

s.t. min
x
zF (x) =

∑
j∈J

cjxj (3.2)∑
j∈J

akjxj +
∑
i∈I

a′kiyi ≤ bk ∀k ∈ K (3.3)

xj ≥ 0 ∀j ∈ J (3.4)

yi ∈ {0, 1} ∀i ∈ I (3.5)

As a first step, we reformulate this problem to an equivalent non-linear MIP, which is

derived by substituting the follower problem by its KKT conditions, see Cao and Chen

(2006) and Bard (1998). In this single-level model, uk are the dual variables correspond-

ing to the follower constraints (3.3), and (3.9) are the dual constraints corresponding

to the primal follower variables xj. (3.8) compares the objective value of the primal

follower problem on the left side with the objective value of the dual follower problem

on the right side. Through the duality theorem, this equation guarantees the optimality

of the follower problem while optimizing the leader’s objective.

min
y

zL(y, x) =
∑
i∈I

f ′iyi +
∑
j∈J

fjxj (3.6)

s.t.
∑
j∈J

akjxj +
∑
i∈I

a′kiyi ≤ bk ∀k ∈ K (3.7)∑
j∈J

cjxj ≤
∑
k∈K

ukbk −
∑
k∈K

∑
i∈I

a′kiukyi (3.8)∑
k∈K

akjuk ≤ cj ∀j ∈ J (3.9)

uk ≤ 0 ∀k ∈ K (3.10)

xj ≥ 0 ∀j ∈ J (3.11)

yi ∈ {0, 1} ∀i ∈ I (3.12)

The non-linear term ukyi in (3.8) can be linearized using the approach used in Cao and

Chen (2006) and Farvaresh and Sepehri (2011) and (3.8) is replaced by the following
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linear constraints with M being a large positive number:∑
j∈J

cjxj ≤
∑
k∈K

ukbk −
∑
k∈K

∑
i∈I

a′kiµki (3.13)

µki ≤ uk +M(1− yi) ∀i ∈ I, k ∈ K (3.14)

µki ≥ uk ∀i ∈ I, k ∈ K (3.15)

µki ≥ −Myi ∀i ∈ I, k ∈ K (3.16)

µki ≤ 0 ∀i ∈ I, k ∈ K (3.17)

Constraints (3.14) - (3.17) ensure that the newly introduced decision variables µki take

the value 0 if yi = 0 and uk if yi = 1.

3.2.2 Benders decomposition

The structure of the MILP derived in the last section allows a solution by BD (Benders,

1962). The basic idea of BD is to decompose the problem into a master problem and

a slave problem and to solve these problems repeatedly. The decision variables are

divided into complicating variables, which in our case are the binary variables yi, and a

set of easier variables, the continuous variables xj, uk, µki. In each iteration, the master

problem determines one possible leader decision. This solution is used in the slave

problem to generate optimality cuts and a feasible solution or feasibility cuts, which

are added to the master problem. The main structure of a BD algorithm is shown in

Algorithm 2.

Algorithm 2: Benders decomposition

1 Initialization: upper bound UBD =∞; set y∗ to any feasible solution of y
2 Solve the slave problem for y = y∗. Let zS be the current optimal value regarding

the slave problem and set the upper bound UBD = min{UBD, zS}. If the slave
problem is bounded, then add an optimality cut to the master problem, else add a
feasibility cut to the master problem.

3 Solve the current master problem and save the solution y∗. Let zM be the current
optimal value regarding the master problem.

4 If UBD − zM < tolerance then stop else continue with Step 2.

Because of the linearization, we do not have to apply the Generalized Benders decom-

position (Geoffrion, 1972) and consequently avoid the convergence problems for bilinear

terms. Sahinidis and Grossmann (1991) showed that the Generalized Benders decom-
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position might end in a local optimum or even not in an optimum at all for different

starting points.

Dual slave problem

The dual slave problem is derived by fixing the decision variables y with y∗ and dualizing

the linearized single-level problem ((3.1) - (3.7), (3.9) - (3.12), (3.13) - (3.17)). In this

model, the dual variables αk, β, γj, δ1ki, δ2ki and δ3ki correspond to the constraints (3.7),

(3.13), (3.9), (3.14), (3.15) and (3.16) and the dual constraints (3.20), (3.21) and (3.22)

to the variables xj, uk and µki.

max
α,β,γ,δ

∑
k∈K

(
bk −

∑
i∈I

a′kiy
∗
i

)
· αk +

∑
j∈J

cjγj (3.18)

+
∑
i∈I

∑
k∈K

(M(1− y∗i )δ1ki −My∗i δ3ki) (3.19)

s.t.
∑
k∈K

akjαk + cjβ ≤ fj ∀j ∈ J (3.20)

− bkβ +
∑
j∈J

akjγj −
∑
i∈I

(δ1ki + δ2ki) ≥ 0 ∀k ∈ K (3.21)

a′kiβ + δ1ki + δ2ki + δ3ki ≥ 0 ∀i ∈ I, k ∈ K (3.22)

αk ≤ 0 ∀k ∈ K (3.23)

β ≤ 0 (3.24)

γj ≤ 0 ∀j ∈ J (3.25)

δ1ki ≤ 0 ∀i ∈ I, k ∈ K (3.26)

δ2ki, δ3ki ≥ 0 ∀i ∈ I, k ∈ K (3.27)

If this problem is feasible with a solution α∗, β∗, γ∗ and δ∗, we add an optimality cut

∑
i∈I

f ′iyi +
∑
k∈K

(
bk −

∑
i∈I

a′kiyi

)
· α∗k +

∑
j∈J

cjγ
∗
j +

∑
i∈I

∑
k∈K

(M(1− yi)δ∗1ki −Myiδ
∗
3ki) ≤ z

(3.28)

to the master problem. If it is unbounded, a new constraint, which bounds the objective

function with a Big-M M2, is added to the slave problem. M2 has to be large enough

such that no extreme point is cut off and only the extreme rays are bounded. The slave
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problem can then be solved by including this constraint:

∑
k∈K

(
bk −

∑
i∈I

a′kiyi

)
· αk +

∑
j∈J

cjγj +
∑
i∈I

∑
k∈K

(M(1− yi)δ1ki −Myiδ3ki) ≤M2 (3.29)

The solution of this problem generates the following feasibility cut, which can be added

to the master problem:

∑
k∈K

(
bk −

∑
i∈I

a′kiyi

)
· α∗k +

∑
j∈J

cjγ
∗
j +

∑
i∈I

∑
k∈K

(M(1− yi)δ∗1ki −Myiδ
∗
3ki) ≤ 0 (3.30)

This slave problem only contains continuous variables and is easy to solve.

Master problem

Let CO be the set of solutions (α∗, γ∗, δ∗) of optimality cuts and CF be the set of solutions

(α∗, γ∗, δ∗) of feasibility cuts. In each iteration of the BD, a cut based on the solution

of the slave problem is added to the respective set. Then, the corresponding master

problem is defined as follows:

min z (3.31)

s.t. z ≥
∑
i∈I

f ′iyi +
∑
k∈K

(
bk −

∑
i∈I

a′kiyi

)
· α∗k +

∑
j∈J

cjγ
∗
j

+
∑
i∈I

∑
k∈K

(M(1− yi)δ∗1ki −Myiδ
∗
3ki) ∀(α∗, γ∗, δ∗) ∈ CO (3.32)

0 ≥
∑
k∈K

(
bk −

∑
i∈I

a′kiyi

)
· α∗k +

∑
j∈J

cjγ
∗
j

+
∑
i∈I

∑
k∈K

(M(1− yi)δ∗1ki −Myiδ
∗
3ki) ∀(α∗, γ∗, δ∗) ∈ CF (3.33)

yi ∈ {0, 1} ∀i ∈ I (3.34)

z ∈ R (3.35)

Through the decomposition we have two smaller subproblems which can be solved much

faster: the continuous slave problem and the usually rather small linear mixed-integer

master problem.

24



3.2 Bilevel problem and algorithm

Acceleration for slave problem

Let zF∗ being the optimal objective value of the follower problem (3.2) - (3.4) for a fixed

y∗. As the dual variables of the KKT conditions uk, µki only ensure optimality of the

follower problem, they don not appear in the leader objective function (3.6) and the

primal slave problem can be expressed as follows:

min zL(y, x) =
∑
i∈I

f ′iy
∗
i +

∑
j∈J

fjxj (3.36)

s.t.
∑
j∈J

akjxj +
∑
i∈I

a′kiy
∗
i ≤ bk ∀k ∈ K (3.37)∑

j∈J
cjxj ≤ z∗F (3.38)

xj ≥ 0 ∀j ∈ J (3.39)

Having the optimal solution value of the follower objective, (3.38) ensures that the leader

objective is minimized under the condition that the follower objective is minimal. The

dual variables αk and β can be calculated by this formulation, as they are not effected

by constraint (3.9). Afterwards, the dual of the follower problem is solved:

max
∑
k∈K

ukbk −
∑
k∈K

∑
i∈I

a′kiµki (3.40)

s.t.
∑
k∈K

akjuk ≤ cj ∀j ∈ J (3.41)

(3.14)− (3.17)

uk ≤ 0 ∀k ∈ K (3.42)

Let γ′j, δ
′
1ki, δ

′
2ki and δ′3ki be the dual variables of this problem. As the dual of the follower

problem does not influence the leader objective function directly but only (3.40) which

is z∗F in (3.38), the dual variables of the slave problem can be calculated as follows:

γj = γ′jβ, δ1ki = δ1kiβ, δ2ki = δ2kiβ and δ3ki = δ3kiβ. As γ′j is the shadow price of

constraint (3.41) for (3.40) which is further the shadow price for (3.38) and as β is

the shadow price of (3.38) for the leader objective function, γ′jβ is the shadow price of

constraint (3.41) for the leader objective function. Furthermore, if the calculation in the

second step ends in β = 0, the dual follower problem does not have to be solved.
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3.3 Discrete Network Design Problem

A general definition of the DNDP is given in Section 3.3.1 and a continuous variable

based linearization of a convex function is given in Section 3.3.2.

3.3.1 Problem definition

In the DNDP (Gao et al., 2005; LeBlanc, 1975; Poorzahedy and Turnquist, 1982), an

existing transportation network is modeled as a set of nodes N , representing origins

and destinations or intersections. The nodes are connected via a set of arcs A, which

represents the road system. Every arc a ∈ A is specified by a travel time function

ta(x) := Ta

(
1 +Ba

(
x
ca

)4
)

(Bureau of Public Roads, 1964). Ta is the free flow travel

time, Ba the congestion influence parameter and ca the capacity limit. The demand in

the network is represented by the OD matrix. The set of origins is defined as R ⊆ N

and the set of destinations as S ⊆ N . The OD matrix is then defined by the values qrs,

which is the number of travelers from r ∈ R to s ∈ S. The set of arcs is divided into two

subsets: A1 is the set of already existing roads, and A2 the set of possible new roads,

which each would cost ba to build.

The decision maker (leader) has to decide which of the possible new roads of the

networks to build subject to a budget B. These decisions will be the binary variables

ya, which are 1 if a new route a ∈ A2 is built and 0 if not. The leader’s objective is to

avoid congestion and minimize the total travel time in the network, which is called the

system-optimum. The follower, the travellers through the network, minimize their own

travel time, which is based on Wardrop’s first principle (Wardrop, 1952). This optimum

is called the user-optimum. The Paradox of Braess (Braess et al., 2005) showed why

these two optima are not necessarily the same and so the formulation as bilevel problem

is necessary. The flow on each arc a = (i, j) ∈ A will be the continuous decision variable

xa and the flow for each destination s on arc a the continuous variables f sa = f sij.

The follower problem, which is an uncapacitated TAP (Nguyen, 1974), can now be

formulated for a fixed leader decision y∗a as follows (Poorzahedy and Turnquist, 1982):

min
∑
a∈A

∫ xa

0

ta(x)dx = min
∑
a∈A

(
Taxa +

TaBa

5c4
a

x5
a

)
(3.43)
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s.t.
∑
j∈N

f skj −
∑
i∈N

f sik =


−
∑
r∈R

qrs, k = s

qrs, k = r

0, o.w.

∀s ∈ S, k ∈ N (3.44)

xa =
∑
s∈S

f sa ∀a ∈ A (3.45)

xa ≤M3y
∗
a ∀a ∈ A2 (3.46)

f sij ≥ 0 ∀s ∈ S, (i, j) ∈ A (3.47)

Constraint (3.44) is the flow conservation constraint for each destination node s ∈ S
and each node k ∈ N . This constraint ensures that all flows with destination s, which

flow into node k, and the demand of node k with destination s have to flow out of node

k. In (3.45) the aggregated flow on a link is computed and (3.46) ensures that only

roads which are built can be used. The Big-M M3 has to be larger than the maximum

possible flow of the network.

The leader problem, which only consists of the objective function with a budget con-

straint, is:

min
∑
a∈A

xata(xa) (3.48)

s.t.
∑
a∈A2

baya ≤ B (3.49)

ya ∈ {0, 1} ∀a ∈ A2 (3.50)

The objective functions of both problems each contain a linear term and a non-linear

term of the form x5. For the non-linear terms, we use the following piecewise linear

approximation, which only requires continuous auxiliary variables.

3.3.2 Linearization of non-linear convex functions

Let f(x) be an increasing, convex and non-linear function. Assume m+1 approximation

points (ϑ0, f0), (ϑ1, f1), . . . , (ϑm, fm) with fi := f(ϑi). Further, f(x) is a function in the

single flow variable xa and ϑm ≥ maxa∈A xa has to hold. The trivial upper bound is∑
r∈R,s∈S qrs. However, as xa can be much smaller than

∑
r∈R,s∈S qrs, empirical upper

bounds can further improve the quality of the approximation. Define ai := fi−fi−1

ϑi−ϑi−1
and

bi := −ϑi−1ai + fi−1. Then f(x) can be approximated by the following piecewise linear
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Chapter 3 BD for DCLBP with application to traffic network design

function:

f̄(x) :=

aix+ bi, for x ∈ [ϑi−1, ϑi) , i = 1, . . . ,m− 1

aix+ bi, for x ∈ [ϑi−1,∞) , i = m
(3.51)

It is clear that ai − ai−1 ≥ 0 and Nemhauser and Wolsey (1988) stated that no binary

variables are needed for the approximation.

Instead, f̄(x) can be minimized by the following linear program (LP):

min f0 + a1x1 +
m∑
i=2

(ai − ai−1)xi (3.52)

s.t. x1 ≤ xi + ϑi−1 i = 2, . . . ,m (3.53)

xi ≥ 0 i = 1, . . . ,m (3.54)

As in each (ϑi, fi) a new slope ai starts, we have to add (ai − ai−1)xi from that point

on with xi = x1 − ϑi−1, but do not subtract anything if x1 < ϑi−1. Because of the

minimization problem and the definition of the objective function constraints, (3.53) and

(3.54) ensure that xi takes the value of min{0, x1 − ϑi−1} and the defined optimization

problem minimizes f(x).

(a2 − a1)x2

ϑ1
x1 ϑ2 ϑ3

f1

f2

f3

x

y f(x)
b0 + a0x
b1 + a1x
b2 + a2x

Figure 3.1: Example of an approximation of f(x) with 4 data points

In the example of Figure 3.1, x1 > ϑ1 and we have to add (a2−a1)x2 with x2 = (x1−ϑ1)

(blue line), but x3 = 0.

Imamoto and Tang (2008) proposed a recursive algorithm to find the optimal minimax

solution of the piecewise linear approximation of convex functions. In the preprocessing,
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3.4 Numerical study

this algorithm optimizes the x-coordinates such that the maximal approximation error

between two adjacent points is minimized.

Applying this piecewise linear approximation to the non-linear objective functions of

the DNDP transforms the problem into a LBP without violating the convexity of the

objective functions. Therefore, the user equilibrium keeps its unique solution (Sheffi,

1985) and the KKT conditions in Section 3.2 are sufficient (Bard, 1998).

3.4 Numerical study

To show the efficiency of our approach, we used three different examples: a small example

(S) taken from Gao et al. (2005), the well-known Sioux-Fall network (M) of LeBlanc

(1975) and - as a large scale example - the network of Berlin Mitte Center (L) (Bar-

Gera, 2013). In the latter two networks, we used the data of the TAP and added possible

new streets to the system in order to have large but also more complex instances, as the

complexity also is caused by the number of possible new roads. LeBlanc (1975), Gao

et al. (2005) and Luathep et al. (2011) solved the Sioux-Fall network only for 5 possible

new roads and (L) was never considered as a DNDP. In the small example, the costs for

building all 6 new roads are 70, in (M) we added 10 (15) new roads with total costs of

110 (155) and in the large example, we added 10 potential new links with total building

costs of 180. As empirical upper bounds for ϑm were not available, we solved the TAP

in a preprocessing with several approximations until ϑm ≥ maxa∈A xa was satisfied. The

key information on the network sizes is given in Table 3.1.

The reported objective value was calculated by evaluating the non-linear objective

function of the leader with the solution obtained from the linearization approximation.

#nodes #OD nodes #arcs #OD pairs

S 12 2 23 1
M 24 24 86 528
L 398 36 871 1260

total flow #new arcs total costs ϑm

S 20 6 70 11
M 3606 10 (15) 110 (155) 260
L 11481.92 10 180 1400

Table 3.1: Key information of examples
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The tests were performed on an Intel(R) Core(TM) i7-2640M CPU, 2.8GHz, 4GB

RAM and implemented in Xpress-MP 7.3. Technically, we solved the primal formulations

in the slave problem of the BD and got the dual variables through the Xpress functions

because the tests showed that the solution time of the primal formulation in our problem

is faster than the dual formulation. The calculations were done with several different

budgets B and different numbers of approximation points m as introduced in Section

3.3.2. Tables 3.2 - 3.5 show the computational results. The performance of the algorithm

was measured by the run time (time) and the number of iterations (iter) of the BD

algorithm. The calculation time of (M) and (L) were distinguished between the total

run time (time total) and the solution time for the first slave problem (time step 1 ),

which shows the complexity of the TAP. Furthermore, the single-level formulation for

(M) was solved to compare the run time of the single-level formulation (SL time) and the

run time for finding the optimal solution in the BD (opt found BD) and the single-level

formulation (opt found SL).

For (S), the leader objective value of the BD algorithm (obj BD) was compared with

the leader objective value of Gao (obj Gao) and the GAP between both values (GAP)

gives a measure for the quality of the approximation. As no optimal solution for (M) and

(L) is reported in the literature, we used the GAP between the approximated objective

value and the value of the evaluated non-linear objective function (GAPA) as a quality

measure.

The results show that the run time of the algorithm depends on several factors: More

approximation points m and the size of the network increase the run time. Increasing the

number of possible new links, which we did in Table 3.4 compared to Table 3.3, increases

the number of iterations accompanied with an increased run time. Furthermore, for (M)

and (L) the number of iterations and run time increases by increasing the budget B up

to 50% of the total costs but starts to decrease again. In the small example, the GAP

to the optimal solution is small in all cases and the algorithm ends in the optimal leader

decision in all instances. In (M) and (L), the approximation GAP GAPA decreases by

increasing the approximation points but the optimal leader decision does not change for

the different approximations.

Furthermore, one can see in Table 3.2 for the small example that the leader objective

is oscillating around the objective value by Gao et al. (2005), because we are not only

approximating the leader objective, but also the follower objective, which means we are

approximating the feasible region of the leader problem. However, further tests showed

that this effect is highly dependent on the test instance. Adding additional flows or arcs
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B m time (sec) iter obj BD obj Gao GAP (%)

10
10 0.03 3 4088.28 4076.59 0.29
20 0.03 3 4075.37 4076.59 -0.03
40 0.06 3 4075.00 4076.59 -0.04

20
10 0.09 8 3959.99 3952.53 0.19
20 0.12 8 3944.64 3952.53 -0.20
40 0.17 8 3952.20 3952.53 -0.01

30
10 0.29 12 2754.68 2668.58 3.23
20 0.30 12 2678.22 2668.58 0.36
40 0.60 12 2677.94 2668.58 0.35

40
10 0.47 19 2560.18 2524.59 1.41
20 1.15 19 2520.03 2524.59 -0.18
40 1.06 19 2527.47 2524.59 0.11

50
10 1.13 23 2397.81 2404.82 -0.29
20 1.34 23 2406.67 2404.82 0.08
40 1.42 23 2397.94 2404.82 -0.29

60
10 1.62 28 2314.27 2281.73 1.43
20 1.85 28 2286.88 2281.73 0.23
40 2.19 28 2281.58 2281.73 -0.01

70
10 1.68 32 2289.24 2256.96 1.43
20 1.91 32 2259.99 2256.96 0.13
40 1.71 32 2255.37 2256.96 -0.07

Table 3.2: Results for example (S)

to the network already reduced this effect for some budgets.

The slower run time for larger networks and more approximation points is related to

the larger Traffic Assignment Problem to be solved. As in (L) even the TAP is difficult to

solve, the run time is much higher. The number of iterations comes from the complexity

of the problem: More possible links enlarge the solution space, but if the budget is small,

one only builds 1 or 2 roads and the number of possibilities is small. If the budget is

large, almost every road can be built and the decision is easier.

For further acceleration, we applied pareto-optimal cuts as proposed in Magnanti and

Wong (1981) to reduce the number of iterations. However, the effort of calculating these

cuts could not reduce the total run time. The reason is the increased effort of solving

the slave problem.

Besides the comparison with the single level formulation we also compared our algo-

rithm with the algorithm of Bard and Moore (1990). Our algorithm finds the optimal

solution significantly faster. Even the case with m = 10 and B = 10 in (S) could only
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B m BD time (sec) iter SL time opt found (sec) GAPA

step 1 total (sec) BD SL (in %)

20

20 0.15 1.63 16 9.15 0.20 3.12 1.739
40 0.27 2.78 16 21.99 0.35 8.95 1.239
80 0.64 4.88 15 52.09 0.65 50.99 0.293

140 1.24 8.89 16 82.35 1.11 78.43 0.098

40

20 0.13 6.27 40 13.46 1.25 6.33 1.461
40 0.26 11.21 47 19.85 1.91 3.80 0.641
80 0.63 22.42 51 46.82 4.40 42.43 0.256

140 1.31 37.93 52 59.38 5.11 56.78 0.055

60

20 0.14 8.41 59 19.22 2.14 19.05 3.086
40 0.27 14.01 61 16.77 3.45 15.69 1.582
80 0.69 24.27 60 22.97 6.88 22.49 0.345

140 1.28 39.88 59 48.70 11.49 47.43 0.073

80

20 0.15 2.24 27 8.05 1.08 1.98 3.097
40 0.27 4.80 31 14.05 2.94 14.03 1.427
80 0.64 7.90 26 26.05 5.16 22.91 0.394

140 1.41 17.80 29 49.10 12.27 48.19 0.083

100

20 0.14 2.51 32 10.46 0.16 10.45 2.974
40 0.27 4.56 29 6.47 0.31 6.45 1.267
80 0.65 10.29 34 20.73 0.61 19.98 0.352

140 1.30 13.88 24 29.72 1.16 28.41 0.125

120

20 0.14 0.26 2 2.05 0.26 2.05 2.745
40 0.27 0.51 2 8.46 0.51 8.44 0.920
80 0.65 1.10 2 16.90 1.10 16.85 0.317

140 1.25 2.86 2 13.07 2.86 13.04 0.127

Table 3.3: Results for example (M) with 10 new links
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B m
BD time (sec)

iter
SL time opt found (sec) GAPA

step 1 total (sec) BD SL (in %)

20

20 0.16 3.40 23 8.69 0.30 4.47 1.739
40 0.32 8.47 27 68.98 0.63 68.45 1.239
80 1.29 16.64 26 154.04 1.28 150.26 0.293

140 1.87 19.05 27 417.73 1.41 409.79 0.098

40

20 0.19 24.14 82 14.16 0.59 10.75 2.599
40 0.37 31.25 82 58.87 0.76 37.73 1.204
80 0.68 48.34 86 182.49 1.12 180.63 0.165

140 1.32 76.26 86 375.84 1.77 337.72 0.105

60

20 0.19 19.92 74 14.15 2.15 13.29 2.302
40 0.38 42.43 86 43.59 4.44 35.49 1.091
80 1.08 62.50 81 164.84 5.40 156.90 0.280

140 1.48 92.04 98 399.12 22.54 397.48 0.136

80

20 0.23 20.65 73 19.44 1.70 19.28 5.286
40 0.45 20.71 59 45.80 4.21 45.62 1.377
80 0.66 47.49 82 132.34 11.58 130.98 0.488

140 1.54 59.83 76 326.61 33.85 303.80 0.161

100

20 0.19 8.17 46 15.56 3.38 15.53 5.122
40 0.33 24.46 89 59.61 2.20 59.58 1.243
80 0.80 29.10 67 133.41 13.46 133.13 0.519

140 1.30 72.32 92 339.39 23.58 338.28 0.109

120

20 0.17 6.81 65 16.59 5.66 16.47 4.979
40 0.30 13.84 66 50.58 9.64 50.32 1.108
80 0.95 36.21 93 144.01 26.87 141.07 0.543

140 1.29 61.25 88 453.26 33.41 453.09 0.097

140

20 0.17 3.62 38 12.07 1.33 12.05 5.081
40 0.31 11.77 55 48.98 3.21 48.93 1.079
80 0.80 15.11 36 134.50 5.88 132.79 0.473

140 1.30 49.70 73 389.57 12.25 386.08 0.077

160

20 0.19 0.35 2 3.87 0.35 3.86 5.348
40 0.34 0.97 2 33.05 0.97 33.03 1.084
80 0.79 2.01 2 117.43 2.01 117.40 0.467

140 1.30 42.13 64 323.60 1.32 323.53 0.113

Table 3.4: Results for example (M) with 15 new links
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time GAPA

B m step 1 (sec) total (min) iter (in %)

30
40 22 6 17 0.251
80 85 22 17 0.045

140 154 43 17 0.017

60
40 25 23 63 0.250
80 84 109 79 0.053

140 180 218 79 0.018

Table 3.5: Results for example (L)

be solved in 36 seconds and 881 iterations by the algorithm of Bard and Moore (1990).

This is related to the large number of follower variables relative to the number of leader

variables. In fact, in the small example, only 2 instances could be solved in less than 1

minute and 50% could not be solved in 1 hour. Tables 3.3 and 3.4 show that the BD

reduced the run time on average by 61% and 63%. Moreover, the run time for finding

the optimal solution is reduced on average by 84% and 92%. Even though the BD was

slightly slower in a few cases, the optimal solution is still found significantly faster.

Finally, we can state that the algorithm always ended in the same decision for building

roads without depending on the accuracy of the approximation. This means that the

approximation GAPA of 2% did not influence the leader decision: Moreover, the results

of all instances in Tables 3.3 - 3.5 show that as few as 10, 20 resp. 40 approximation

points gave a good approximation and the effort of the better approximation does not

improve results; but increases run times.

3.5 Conclusion

We proposed a BD method for solving DCLBPs to global optimality. BD is applied

to a reformulation of the DCLBP to a single-level MILP and the slave problem solving

is further accelerated. The computational results show that this approach, to the best

of our knowledge, is the first algorithm solving such large instances for DCLBP and

DNDP, even though we just used a basic BD. As the solution time of the slave problem,

compared to the master problem, is rather large, the acceleration of solving this problem

is of interest for future research.

Our approach enhances computational capabilities of existing (discrete) network de-

sign approaches. However, at the same time it has several limitations which are venues
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for future research. These are given demand matrices rather than elastic demands and

road pricing models, discrete potential new roads with given capacity rather than con-

tinuous network design problems for large urban networks, and deterministic rather than

stochastic user equilibria.
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Chapter 4

A dynamic Discrete Network Design

Problem for maintenance planning in

traffic networks

We propose a dynamic model for network maintenance planning by extending the Dis-

crete Network Design Problem. The leader decides which road in the network is main-

tained in which period and the follower, as in the Discrete Network Design Problem,

optimizes its own path through the network. The non-linear bilevel problem is first lin-

earized and then transformed into a single-level mixed-integer linear program by using

the Karush-Kuhn-Tucker conditions. This model is solved with Benders Decomposition.

The numerical study shows that this method finds better solutions faster compared to

solving the mixed-integer formulation directly and using a genetic algorithm. Further-

more, we show the benefit of this approach compared to simple greedy heuristics.

4.1 Introduction

Many metropolises around the world face the problem of congestion. Moscow and Istan-

bul in Europe and Rio de Janeiro and Mexico City in America are only some examples

of congested cities not only during rush hour. Table 4.1 shows the most congested cities

in Europe. The congestion percentage is the average travel time in the city compared

to the free flow travel time in 2013 (TomTom, 2014). In 48 European cities the average

travel time is 20% or more above a free flow network and in 40 cities the congestion

index in the morning peak is 40% or higher (TomTom, 2014).

Moreover, the deterioration of the streets decreases the quality of the whole network

and causes even more congestion. Therefore, streets and bridges in a network need to
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Rank City Country Congestion Morning peak Evening peak

1 Moscow Russia 74% 111% 141%
2 Istanbul Turkey 62% 87% 129%
3 Palermo Italy 39% 60% 64%
4 Warsaw Poland 39% 71% 75%
5 Rome Italy 37% 71% 64%

Table 4.1: Congestion in European cities 2013 (TomTom, 2014)

be maintained from time to time. The German interstate and federal highway network

consists of roughly 39,000 bridges and the Federal Ministry of Transport and Digital

Infrastructure is planning to invest 1.06 billion Euro in bridge maintenance projects

with an investment volume of more than 5 million Euro between 2015 and 2017 (BMVI,

2014a). The German railway company DB is going to invest 28 billion Euro over the

next 5 years for maintenance: Among other things, 875 bridges will be renewed. This

will add up to 850 construction zones per day (DB, 2014). In Munich, 600 construction

zones are planned for 2015 (Völklein, 2015). During these maintenance phases, the

capacity of streets can be less or streets have to be closed, which leads to congestion

and longer travel times for the user during these periods, but decreases travel time

afterwards. Furthermore, the repair costs can increase over the years if you postpone

the maintenance.

We formulate a non-linear bilevel model for this problem and introduce the Dynamic

Discrete Network Design Problem (DDNDP), as for each period in the planning horizon

a DNDP is solved. As in the DNDP, which was first introduced by LeBlanc (1975),

the congestion in a network is minimized by finding the optimal maintenance plan of

the network under the assumption that all travelers in a network minimize their own

travel time from origin to destination. Braess et al. (2005) showed that the objective

of minimizing congestion and the goal of minimizing travel time are not necessarily the

same. Similar to the DNDP, we are dealing with a hierarchical decision process (Schnee-

weiß, 2003) and different objective functions. Therefore, we need a bilevel formulation

for the DDNDP as well.

The contribution of this chapter is first the introduction of a bilevel model for the

DDNDP that calculates a long-term schedule for the maintenance work, minimizes the

congestion in the network but is restricted to a certain budget per year. Second, we

use a BD algorithm for solving the linearized problem by approximating the travel time

function. We show that a terminated BD algorithm that is stopped after an iteration
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limit finds good solutions in reasonable time. Moreover, we show that simple greedy

heuristics used in practice, which are based on the road reliability and the current road

congestion, cannot compete with our approach especially in fulfilling budget restrictions.

The remainder of this chapter is structured as follows. In Section 4.2, we introduce the

bilevel formulation for the Dynamic Discrete Network Design Problem. In the following

section, the model is reformulated into a MILP and solved with BD. In Section 4.4,

the model is tested in a numerical study and the chapter ends with conclusions and an

outlook on further research.

4.2 Mathematical model

The network is defined by a set of nodes N and a set of arcs A, which are the roads of the

network. The OD matrix defines the demand qrs for all possible origins r ∈ R ⊆ N and

destinations s ∈ S ⊆ N . We consider a set T of periods (for example years) as planning

horizon, in which the maintenance work has to be done. Furthermore, we have a subset

of arcs A2 ⊂ A which have to be maintained. For modeling purposes, we additionally

add a set of arcs AM2 ⊂ A and a set AN2 ⊂ A, which represent the same links as A2 during

and after maintenance. Two mapping functions fM : A2 → AM2 and fN : A2 → AN2

link these arcs: fM(a) represents link a during maintenance and fN(a) represents link

a after maintenance (Figure 4.1). Further, let Ā2 = A2 ∪ AM2 ∪ AN2 . Therefore, exactly

one arc (i, j) ∈ A2 or (i, j) ∈ AM2 or (i, j) ∈ AN2 is open for traffic in the network in a

specific period.

1 2
a ∈ A2

fM (a) ∈ AM2

fN (a) ∈ AN2

Figure 4.1: Example of modelling an arc of A2

For each arc a ∈ A2, there exists a due date la until which it has to be maintained.

The costs are bta for maintaining link a in period t. Moreover, there is a budget B for

every period. The capacity of an arc is defined by an initial value ca and a reliability

index profile rta. As shown in Ng et al. (2009), this reliability gives the percentage of

used capacity in each period. This reliability is reduced from period to period, which is

associated with longer travel time, and increased after maintenance. Furthermore, Ta is
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the free flow travel time, Ka the congestion influence parameter and ca the capacity limit

for each arc a. Including the reliability index in the BPR function (Bureau of Public

Roads, 1964) gives the following modified travel time function for the travelers on arc x:

hta(x) := Ta

(
1 +Ka

(
x

carta

)4
)

With the binary decision variables yta, the leader decides on the maintenance period

of each arc a ∈ A2 subject to the budget in each period. yta = 1 decides for a ∈ A2

that a is not yet maintained in period t, for a ∈ AM2 that a is maintained in period t

and for a ∈ AN2 that a was maintained before period t. The follower decides on the

continuous variables f sta = f stij representing the flow on arc a = (i, j) to destination s

in period t and on the cumulative flow variable xta on arc a in period t. The leader

minimizes the system-optimum - the total congestion in the network - over all periods

and the follower, the travelers in the network, minimizes the sum of the travel times for

all origin-destination pairs in each period. This is called the user-optimum.

The leader problem is given by

min
∑

a∈A,t∈T
xtah

t
a(x

t
a) (4.1)

s.t.
∑
a∈A2

btay
t
a ≤ B ∀t ∈ T (4.2)∑

t∈T,t≤la
yta = 1 ∀a ∈ AM2 (4.3)

yta + yta′ + yta′′ = 1 ∀a ∈ A2, a
′ = fM(a), a′′ = fN(a), t ∈ T (4.4)

yt−1
a ≤ yta + yta′ ∀a ∈ A2, a

′ = fM(a), t ∈ T \ {1} (4.5)

yt−1
a′ + yt−1

a′′ ≤ yta′′ ∀a ∈ A2, a
′ = fM(a), a′′ = fN(a), t ∈ T \ {1} (4.6)

yta ∈ {0, 1} ∀a ∈ Ā2, t ∈ T (4.7)

In (4.2), the budget is limited for each period and (4.3) ensures that all arcs are main-

tained before a certain deadline. (4.4) ensures that an arc is either unmaintained or

currently maintained or has already been renewed. Equation (4.5) ensures that arc a

can either be maintained (a ∈ AN2 ) or stay unmaintained (a ∈ A2) in period t if it is

unmaintained in period t− 1. Equation (4.6) guarantees that a renewed arc a ∈ AN2 has

to be used in period t if it was maintained in period t− 1 (a ∈ AM2 ) or earlier (a ∈ AN2 ).

The follower problem is an uncapacitated TAP (Nguyen, 1974). This can be formu-
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lated for fixed leader decisions (yta)
∗ as follows (Poorzahedy and Turnquist, 1982):

min
∑

a∈A,t∈T

∫ xta

0

hta(x)dx = min
∑

a∈A,t∈T
Tax

t
a

(
1 +

Ka

5c4
ar
t
a

(xta)
4

)
(4.8)

s.t.
∑
j∈N

f stkj −
∑
i∈N

f stik =


−
∑
r∈R

qrs, k = s

qrs, k = r

0, o.w.

∀s ∈ S, k ∈ N, t ∈ T (4.9)

xta =
∑
s∈S

f sta ∀a ∈ A, t ∈ T (4.10)

xta ≤M(yta)
∗ ∀a ∈ Ā2, t ∈ T (4.11)

f stij ≥ 0 ∀s ∈ S, (i, j) ∈ A, t ∈ T (4.12)

Constraint (4.9) is a flow conservation constraint that also satisfies the demand. In

(4.10), the aggregated flow on a link is computed and (4.11) ensures with a large positive

number M that only links are used which are open during that period. The maximum

flow on an arc is restricted by the total demand of the network. Therefore, M can be de-

fined as
∑

r∈R,s∈S qrs. Obviously, this problem can be decomposed into |T | subproblems

for every period.

Both objective functions (4.1) and (4.8) contain a linear term and a non-linear term x5.

In the following section, we linearize the non-linear term with a piecewise approximation.

4.3 Solution algorithm

The non-linear bilevel problem of Section 4.2 is solved with the BD approach by Fontaine

and Minner (2014). The idea of this algorithm is to linearize the model first (Section

4.3.1). This LBP is transformed into an equivalent mixed integer program and solved

via BD (Section 4.3.2). Further, the slave problem is decomposed into |T | subproblems.

4.3.1 Transformation to a linear bilevel problem

To transform the non-linear bilevel problem into an LBP, the leader and follower ob-

jective functions are linearized (Fontaine and Minner, 2014). f(x) = x5, which is an

increasing, convex and non-linear function, is approximated by piecewise linear terms.

This piecewise linear function is divided into m linear segments and represented by m+1
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data points (ϑ0, f0), (ϑ1, f1), . . . , (ϑm, fm) with fi := f(ϑi). An upper bound for ensuring

ϑm ≥ maxa∈A,t∈T xta is given by
∑

r∈R,s∈S qrs. Nevertheless, empirical upper bounds can

reduce the number of approximation points or improve the approximation. In practice,

the demand often splits up and the flow on an arc xta can be much smaller than the

cumulated demand of the whole network.

With ai := fi−fi−1

ϑi−ϑi−1
and bi := −ϑi−1ai+fi−1, f(x) can be approximated by the following

piecewise linear function:

f̄(x) :=

aix+ bi, for x ∈ [ϑi−1, ϑi) , i = 1, . . . ,m− 1

aix+ bi, for x ∈ [ϑi−1,∞) , i = m
(4.13)

Let I = 2, . . . ,m. Due to the convexity, no binary auxiliary variables are needed

(Nemhauser and Wolsey, 1988) for the approximation and we can minimize f̄(x) by

the following LP:

min f0 + a1x1 +
∑
i∈I

(ai − ai−1)xi (4.14)

s.t. x1 ≤ xi + ϑi−1 i ∈ I (4.15)

xi ≥ 0 i ∈ I (4.16)

(a2 − a1)x2

ϑ1
x1 ϑ2 ϑ3

f1

f2

f3

x

y f(x)
b0 + a0x
b1 + a1x
b2 + a2x

Figure 4.2: Example of an approximation of f(x) with 4 data points

Figure 4.2 illustrates the idea of the approximation. As this is a minimization problem,

xi takes value max(x1−ϑi, 0) and adds the difference between the two slopes ai and ai−1

(blue line) to the objective function and f(x1) is approximated. For ϑ2 < x1 ≤ ϑ3, both
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4.3 Solution algorithm

(a2 − a1)x2 and (a3 − a2)x3 are added to the objective value.

In the DDNDP, the travel time of each arc a ∈ A is approximated in every period

t ∈ T . Therefore, the continuous auxiliary variable xtia is introduced for all i ∈ I, a ∈ A
and t ∈ T . This piecewise linear approximation transforms the DDNDP into an LBP.

However, the user equilibrium keeps its unique solution (Sheffi, 1985) as the convexity

of the objective functions is not violated.

4.3.2 Benders decomposition

The follower problem is replaced by its KKT conditions. Bard (1998) showed that these

conditions are sufficient if the follower solution is unique. For the KKT conditions, we

introduce the dual variables utsk, v
t
a and wtia for the follower constraints (4.20) - (4.22),

the dual constraints (4.24) and (4.25) to the primal follower variables f stij and xtia and a

large positive number M2. Because of the duality theorem, equation (4.23) guarantees

the optimality of the follower problem through the KKT conditions while the leader’s

objective is optimized. We further define the indicator function χa, which is 1 for all

a ∈ Ā2 and 0 otherwise and

Ct
1a := Ta

(
1 +

Ka

carta
a1

)
Ct
ia :=

TaKa

carta
(ai − ai−1) (4.17)

Ĉt
1a := Ta

(
1 +

Ka

5carta
a1

)
Ĉt
ia :=

TaKa

5carta
(ai − ai−1) (4.18)

for all a ∈ A, i ∈ I and t ∈ T

min
∑
t∈T

∑
a∈A
s∈S

Ct
1af

st
a +

∑
i∈I
a∈A

Ct
iax

t
ia

 (4.19)

s.t.

(4.2)− (4.7)∑
j∈N

f stkj −
∑
i∈N

f stik = qks ∀s ∈ S, k ∈ N, t ∈ T (4.20)∑
s∈S

f sta ≤Myt∗a ∀a ∈ Ā2, t ∈ T (4.21)∑
s∈S

f sta ≤ xtia + ϑi−1 ∀a ∈ A, i ∈ I, t ∈ T (4.22)
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∑
a∈A
s∈S

Ĉt
1af

st
a +

∑
i∈I
a∈A

Ĉt
iax

t
i,a ≤

∑
s∈S
k∈N

qk,su
t
ks+

∑
a∈Ā2

Mvtay
t
a +

∑
i∈I
a∈A

wtiaϑi−1 ∀t ∈ T (4.23)

utsk − utsj + χav
t
a +

∑
i∈I

wtia ≤ Ĉt
1a ∀s ∈ S, a = (k, j) ∈ A, t ∈ T (4.24)

− wtia ≤ Ĉt
ia ∀a ∈ A, i ∈ I, t ∈ T (4.25)

f sta ≥ 0 ∀s ∈ S, a ∈ A, t ∈ T (4.26)

xtia ≥ 0 ∀i ∈ I, a ∈ A, t ∈ T (4.27)

utsk ∈ R ∀s ∈ S, k ∈ N, t ∈ T (4.28)

vta ≤ 0 ∀a ∈ Ā2, t ∈ T (4.29)

wtia ≤ 0 ∀i ∈ I, a ∈ A, t ∈ T (4.30)

The bilinear term (4.23) in the optimality condition following from duality theory is

linearized by introducing the auxiliary variables µta and replacing constraint (4.23) with

the following set of equations (Cao and Chen, 2006; Farvaresh and Sepehri, 2011). The

newly introduced decision variables µta are forced to take the value 0 if yta = 0 and vta if

yta = 1. ∑
a∈A
s∈S

Ĉt
1af

st
a +

∑
i∈I
a∈A

Ĉt
iax

t
i,a ≤

∑
s∈S
k∈N

qk,su
t
ks+

∑
a∈Ā2

Mµta +
∑
i∈I
a∈A

wtiaϑi−1 ∀t ∈ T (4.31)

µta ≤ vta +M2(1− yta) ∀a ∈ Ā2, t ∈ T (4.32)

µta ≥ vta ∀a ∈ Ā2, t ∈ T (4.33)

µta ≥ −M2y
t
a ∀a ∈ Ā2, t ∈ T (4.34)

µta ≤ 0 ∀a ∈ Ā2, t ∈ T (4.35)

This MILP is solved with BD (Benders, 1962). BD devides the decision variables into

complicating and non-complicating variables. In the DDNDP, the complicating variables

are the binary variables yta and the non-complicating ones are the continuous variables

f stij , xtia, u
t
sk, v

t
a, µ

t
a and wtia. The problem is decomposed into the master problem, which

calculates a new feasible solution for the yta in each iteration, and the slave problem,
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which solves the MILP (4.19), (4.20) - (4.22), (4.24) - (4.30), (4.31) - (4.35) for the

yta calculated in the master problem being fixed and generates an optimality cut or a

feasibility cut for the master problem. Due to the problem structure of |T | independent

TAPs as follower problem, the slave problem can be decomposed into |T | independent

subproblems which are solved in parallel for each t ∈ T . Algorithm 3 shows an outline

of the BD algorithm.

Algorithm 3: Benders decomposition: Main structure

1 Set upper bound UBD =∞ and y∗ to any feasible solution of y.
2 Solve the subproblems of the slave problem for y = y∗ in parallel. Let zS be the

optimal solution value of the slave problem. Update the upper bound
UBD = min{UBD, zS}. If the slave problem is bounded, then add an optimality
cut to the master problem, else add a feasibility cut to the master problem.

3 Solve the master problem and save the solution y∗. Let zM be the optimal solution
value of the solved master problem.

4 If stopping criterion is true: stop, else: go to Step 2.

We used BD as a heuristic, which stops after a predefined time limit. In other words:

the algorithm stops after a predefined time limit if the classical stopping criterion UBD−
zM < tolerance is not met before.

Dual slave problem

The slave problem is defined by minimizing (4.19) subject to (4.20) - (4.22), (4.24) -

(4.30), (4.31) - (4.35) for fixed decision variables y∗. This problem is decomposed into

|T | subproblems and each subproblem t is dualized. The dual variables αtsk, β
t
a, γ

t
ia, ν

t
sa,

τ tia, δ
t, λ1t

a , λ2t
a and λ3t

a correspond to constraints (4.20) - (4.22), (4.24) - (4.25), (4.31)

- (4.34) and the dual constraints (4.37) - (4.42) to the primal variables f sta , xtia, u
t
sk, v

t
a,

µta and wtia.

max
∑
s∈S
k∈N

qksα
t
sk +

∑
a∈Ā2

βta +
∑
a∈A
i∈I

ϑi−1γ
t
ia +

∑
a∈A
s∈S

Ĉt
iaν

t
sa +

∑
a∈A
i∈I

Ĉt
iaτ

t
ia+

∑
a∈Ā2

(
M2(1− yt∗a )λ1t

a −M2y
t∗
a λ

3t
a

)
(4.36)

s.t. αtsk − αtsj + χaβ
t
a +

∑
i∈I

γtia + Ĉt
1aδ

t ≤ Ct
1a ∀s ∈ S, a = (k, j) ∈ A (4.37)

− γtia + Ĉt
iaδ

t ≤ Ct
ia ∀a ∈ A, i ∈ I (4.38)
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− qksδt +
∑
j∈N

νstkj −
∑
i∈N

νstik = 0 ∀s ∈ S, k ∈ N (4.39)

− λ1t
a − λ2t

a +
∑
s∈S

νtsa ≥ 0 ∀a ∈ A (4.40)

λ1t
a + λ2t

a + λ3t
a −Mδt ≥ 0 ∀a ∈ A (4.41)

− ϑi−1δ
t +
∑
s∈S

νtsa − τ tia ≥ 0 ∀i ∈ I, a ∈ A (4.42)

αtsk ∈ R ∀s ∈ S, k ∈ N (4.43)

βta, λ
1t
a ≤ 0 ∀a ∈ Ā2 (4.44)

λ2t
a , λ

3t
a ≥ 0 ∀a ∈ Ā2 (4.45)

δt ≤ 0 (4.46)

νtsa ≤ 0 ∀a ∈ A, s ∈ S (4.47)

γtia, τ
t
ia ≤ 0 ∀i ∈ I, a ∈ A (4.48)

If this problem is feasible for all t ∈ T with a solution α∗, β∗, γ∗, δ∗, ν∗, τ ∗ and λ∗,

we add the following optimality cut

∑
t∈T

∑
s∈S
k∈N

qksα
t∗
sk +

∑
a∈Ā2

βt∗a +
∑
a∈A
i∈I

ϑi−1γ
t∗
ia +

∑
a∈A
s∈S

Ĉt
iaν

t∗
sa +

∑
a∈A
i∈I

Ĉt
iaτ

t∗
ia+

∑
a∈Ā2

(
M2(1− yta)λ1t∗

a −M2y
t
aλ

3t∗
a

) ≤ z (4.49)

to the master problem. If the problem is unbounded for t ∈ T , the objective of the dual

slave problem is bounded by adding the following constraint:∑
s∈S
k∈N

qksα
t
sk +

∑
a∈Ā2

βta +
∑
a∈A
i∈I

ϑi−1γ
t
ia +

∑
a∈A
s∈S

Ĉt
iaν

t
sa +

∑
a∈A
i∈I

Ĉt
iaτ

t
ia+

∑
a∈Ā2

(
M2(1− yt∗a )λ1t

a −M2y
t∗
a λ

3t
a

)
≤M3 (4.50)

with M3 being a large enough number to bound the extreme rays without cutting off

any extreme points. The slave problem is solved and the solution generates a feasibility
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cut, which is added to the master problem:

∑
t∈T

∑
s∈S
k∈N

qksα
t∗
sk +

∑
a∈Ā2

βt∗a +
∑
a∈A
i∈I

ϑi−1γ
t∗
ia +

∑
a∈A
s∈S

Ĉt
iaν

t∗
sa +

∑
a∈A
i∈I

Ĉt
iaτ

t∗
ia+

∑
a∈Ā2

(
M2(1− yta)λ1t∗

a −M2y
t
aλ

3t∗
a

) ≤ 0 (4.51)

Master problem

With CO being the set of optimality cuts and CF being the set of feasibility cuts, the

BD algorithm adds the generated constraint of the slave problem to the respective set

in each iteration. The master problem can be defined as follows:

min z (4.52)

s.t. (4.2)− (4.7)

co ∀co ∈ CO (4.53)

cf ∀cf ∈ CF (4.54)

yta ∈ {0, 1} ∀a ∈ Ā2, t ∈ T (4.55)

z ∈ R (4.56)

4.4 Numerical study

4.4.1 Test setup

The proposed BD algorithm was tested in a numerical study and compared with the

MILP formulation solved with branch-and-bound (B&B) on a commercial solver and

with a genetic algorithm (GA). Moreover, two simple greedy heuristics were used as

a benchmark from practice. The methods were tested on the well-known Sioux-Fall

network of LeBlanc (1975) and an extended Sioux-Fall network originally proposed by

Farvaresh and Sepehri (2013) that is four times larger. The BD and the B&B were exe-

cuted in Xpress-MP 7.6 with default settings. The genetic algorithm was implemented

in Matlab R2014a. The chromosomes of the GA were defined as an integer vector of

the length |A2|. Each point in the vector takes values from 1 to |T |, which defines the

period of maintenance, and all violations of the budget constraint were penalized in the
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objective function. The chromosomes were evaluated by solving |T | TAPs using the

Xpress interface for Matlab. The first greedy heuristic selects the arcs with the lowest

reliability first (LRF), while the second greedy heuristic selects them according to the

highest congestion first (HCF) until the budget of a period is exceeded.

The tests were performed on an Intel(R) Core(TM) i7-3770 CPU, 3.4GHz, 32GB

RAM with 8 threads. All models used all 8 threads: The BD solved the subproblems

in parallel, the B&B used parallel computing method for solving the MILP and the GA

evaluated the chromosomes in parallel. The approximation points are calculated in the

preprocessing according to Imamoto and Tang (2008). A recursive method calculates

the x-coordinates in such a way that the maximal approximation error between two

adjacent points is minimized.

4.4.2 Sioux-Fall network

We used the TAP data of the well-known Sioux-Fall network of LeBlanc (1975) and

generated the additionally needed data. The network consists of 24 nodes, which are all

origin and destination nodes, and 76 arcs. There are 528 OD-pairs with a total flow of

3,606 in the network. The planning horizon was 10 periods.

We relaxed constraint (4.3) and had no deadlines; the objects only need to be main-

tained during the planning horizon. The reliability was randomly generated between

60% and 100% in period 1 and decreases in every period. Further, we assume that the

maintenance of every road takes one period and the reliability of the link during that

period is reduced by 50% ( r
t
a

2
= rta′ for a ∈ A2 and fM(a) = a′ ∈ AM2 ). After mainte-

nance, the reliability increases by 15%. This reliability development was adapted from

Ng et al. (2009).

We tested the network with |A2| = 38 and |P | = 10. The costs for maintaining

all roads in the first period sum up to 420 and increase between 3% and 6% in every

period. We used three different budgets to evaluate the algorithm (B = 50, B = 75

and B = 100). For the approximation, we used m ∈ {20, 40, 60} data points. Fontaine

and Minner (2014) showed that a good approximation for solving the Sioux-Fall network

without maintenance can already be found with 20 and 40 data points. Furthermore, the

objective value of an optimal network, in which every road has already been maintained

in every period, is 5.89bn (5.71bn for m = 40 and 5.68bn for m = 60), which gives a

lower bound for the optimization problem. These values give some lower bounds and

show the effect of maintenance

We tested the genetic algorithm with different parameter settings. The crossover
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fraction and the population size had the highest impact on the solution quality. Table 4.2

shows the parameter setting that returned the best results and is used for the numerical

study in this chapter.

parameter value

population size 50
fitness scaling rank

selection stochastic uniform
elite count 2

crossover fraction 0.7
crossover scattered
mutation uniform (0.01)

Table 4.2: Genetic algorithm: Parameters

Moreover, the time limit was set to one hour for all methods in this setting.

Results

Table 4.3 shows the objective values for the solution methods. The GA solved each

problem instance 20 times and Figures 4.3a - 4.4f show the average values of the al-

gorithm. Moreover, the solutions were evaluated in the non-linear objective function

and shown in angle brackets under the solution. The approximation gaps are similar

to the ones in Fontaine and Minner (2014). For a budget of B = 50, the B&B could

not find any solution, neither the genetic algorithm nor both heuristics (LRF and HCF)

could compete with the BD in both cases. The solution space in these instances is very

small, as the budget is close to the minimal required budget. Therefore, the GA and

the greedy approaches had problems finding feasible solutions which do not violate the

budget constraints. Hence, we further allowed the use of left over budget from previous

periods in the greedy heuristic to generate a solution. In Table 4.3, the superscript

in round brackets indicate indicates the number of periods where the budget limit was

exceeded. The BD is the only method that produced feasible solutions. Moreover, these

solutions have better objective values than the other methods even though no constraint

is violated.

In the other two budget cases, the B&B always performed worst. The LRF heuristic

also finds good solutions for a budget of B = 75. In fact, those solutions even outperform

the GA. However, for a budget of B = 100, the order is reversed. The HCF, which had

the second best results for a budget of B = 50, is the worst for the other two cases. These
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B m BD LRF HCF B&B
GA

best worst mean

50

20
8.07 8.49(5) 8.42(3)

-
8.28(3) 8.76(7) 8.53(4.7)〈

7.60
〉 〈

7.88
〉 〈

7.90
〉 〈

7.78
〉 〈

8.32
〉 〈

8.02
〉

40
7.39 7.63(5) 7.60(3)

-
7.52(3) 8.00(7) 7.73(4.8)〈

7.29
〉 〈

7.55
〉 〈

7.54
〉 〈

7.45
〉 〈

7.93
〉 〈

7.65
〉

60 7.18 7.51(5) 7.49(3)

- 7.35(3) 7.80(7) 7.59(4.9)〈
7.14

〉 〈
7.49

〉 〈
7.46

〉 〈
7.31

〉 〈
7.77

〉 〈
7.55

〉

75

20 8.00 8.05 8.39 8.20 8.02 8.27 8.13〈
7.53

〉 〈
7.52

〉 〈
7.88

〉 〈
7.77

〉 〈
7.48

〉 〈
7.74

〉 〈
7.64

〉
40

7.18 7.28 7.62 7.68 7.26 7.56 7.40〈
7.1
〉 〈

7.21
〉 〈

7.55
〉 〈

7.61
〉 〈

7.17
〉 〈

7.47
〉 〈

7.31
〉

60
7.06 7.18 7.52 7.38 7.27 7.46 7.34〈
7.03

〉 〈
7.16

〉 〈
7.48

〉 〈
7.35

〉 〈
7.21

〉 〈
7.43

〉 〈
7.31

〉

100

20
7.80 8.02 8.34 8.19 7.74 8.00 7.91〈
7.30

〉 〈
7.45

〉 〈
7.72

〉 〈
7.72

〉 〈
7.24

〉 〈
7.58

〉 〈
7.44

〉
40

7.10 7.19 7.53 7.45 7.18 7.36 7.25〈
7.01

〉 〈
7.17

〉 〈
7.46

〉 〈
7.32

〉 〈
7.04

〉 〈
7.26

〉 〈
7.15

〉
60

6.97 7.12 7.43 7.69 7.08 7.28 7.18〈
6.93

〉 〈
7.10

〉 〈
7.41

〉 〈
7.66

〉 〈
7.06

〉 〈
7.24

〉 〈
7.15

〉
Table 4.3: Objective values for Sioux-Fall network (in 109)
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results indicate that, in general, it is beneficial to maintain links with a low reliability

fast. However, the disadvantage of these heuristics is the ineffective usage of the budget

and the uncoordinated maintenance plan. Regions with several maintenance works can

cause highly congested areas.

Figures 4.3 and 4.4 show the improvement of the objective values for the BD, the

GA and the B&B with a Budget of 50, 75 and 100 and an approximation of m = 20,

m = 40 and m = 60. In general, the BD has a lot of improvements in the beginning and

finds the best solution very fast. These results correspond to the results in Fontaine and

Minner (2014). In the DNDP, the BD even found the optimal solution in few iterations,

but the proof of optimality took many iterations. The GA also improves continuously;

however, the improvements are slower.
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(c) m = 60

Figure 4.3: Objective values of the Sioux Fall network for B = 50

For the other two budget cases (Figures 4.4a - 4.4f), the BD and the GA have similar

initial solutions, but the BD improves more and much faster than the GA. With increas-

ing m, the gap between the BD and the GA gets even bigger. Even though the B&B
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finds several feasible solutions, the initial solution of the B&B is (except of m = 60,

B = 75) the worst solution if compared to all the approaches and the best found is only

competitive for B = 75 and m = 20.
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Figure 4.4: Objective values of the Sioux Fall network for B = 75 and B = 100
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4.4.3 Extended Sioux-Fall network

Farvaresh and Sepehri (2013) introduced a network that combines 4 Sioux-Fall networks

to one larger network. It consists of 100 nodes and 317 arcs. The possible 30 new arcs are

included in the network and chosen as maintenance objects. The planning horizon is set

to 8 periods. The original dataset consists of 817 OD-pairs. However, the total demand

was only about 1/3 of the demand of the classical Sioux-Fall. As maintenance planning is

only necessary in congested networks, we multiply the demand with 12 to get congestion

effects similar to those in the classical Sioux-Fall network. The reliability is generated

as before and the costs of Farvaresh and Sepehri (2013) are used as maintenance costs.

The total maintenance costs in the first period sum up to 2,062 and the costs increase

between 3% and 6% per period. We used two budget cases: 300 and 400. We used two

approximation precisions with m = 20 and m = 40. Due to the smaller solution space

in the maintenance plan, the population size was reduced to 25. However, because of

the large TAP, the run time was increased to 4 hours for all methods and the MILP was

only solved with BD and not with the B&B anymore.

Results

Table 4.4 shows the results for the numerical tests of the larger network. The genetic

algorithm was again executed 20 times and best, worst and mean values are shown.

As in the low budget case, the solution with the best/worst objective value und the

solution with the best/worst budget penalty were not always the same, both solutions

are reported in the table. Because of the large number of arcs in relation to the number

of maintenance objects, the effects of maintenance works are smaller and the solutions

are closer to each other. This is also reflected by the objective value of an optimal

network, in which every road has already been maintained in every period, which is

5.08 · 108 for m = 20 and 4.95 · 108 for m = 40.

The results of the second network show again that BD finds the best solutions. Only

with a budget of 400 and 20 approximation points, the GA finds a better solution

once; however, on average BD is still better. Surprisingly, the HCF heuristic finds good

solutions for the high budget case. Nevertheless, with a low budget, only the BD finds

solutions that satisfy the budget as in the first network for the low budget, the scheduling

makes the problem more difficult. Moreover, in the case of those solutions where the

budget is not satisfied for the other methods, the congestion in the solution of the BD is

less. Especially for m = 20, if the budget constraint is violated only twice, the congestion
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B m BD LRF HCF
GA

best worst mean

300
20

5.38 5.41(3) 5.37(4) 5.39(4),5.43(2) 5.45(3),5.40(5) 5.42(3.6)〈
5.17

〉 〈
5.20

〉 〈
5.18

〉 〈
5.18

〉
,
〈
5.23

〉 〈
5.26

〉
,
〈
5.21

〉 〈
5.21

〉
40 5.13 5.16(3) 5.13(4) 5.14(1) 5.18(3),5.16(6) 5.16(3.6)〈

5.06
〉 〈

5.09
〉 〈

5.07
〉 〈

5.07
〉 〈

5.13
〉
,
〈
5.10

〉 〈
5.10

〉
400

20 5.38 5.42 5.38 5.38 5.42 5.40〈
5.18

〉 〈
5.22

〉 〈
5.18

〉 〈
5.17

〉 〈
5.21

〉 〈
5.19

〉
40 5.13 5.18 5.13 5.13 5.17 5.14〈

5.07
〉 〈

5.12
〉 〈

5.07
〉 〈

5.07
〉 〈

5.11
〉 〈

5.08
〉

Table 4.4: Objective values for the extended Sioux-Fall network (in 108)

value is among the worst of all 20 runs.

4.5 Conclusion

We proposed a non-linear bilevel formulation for a multi-period maintenance planning

problem. The formulation was linearized and a BD algorithm was applied to solve this

problem. The terminated algorithm finds good feasible solutions very fast compared to

the MILP formulation solved with a B&B and using a genetic algorithm. Especially

with a tight budget, which is often the case in practice, the BD is the only algorithm

that finds good solutions without violating the budget. As convergence of the BD could

not be realized, reducing the number of iterations and finding good lower bounds is of

interest for future research. Since the classical genetic algorithms have problems finding

feasible solutions for low budgets, specific operators should also be developed.
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Chapter 5

Benders Decomposition for the

Decentralized Facility Selection

Problem

Production environments become more and more complex and monolithic models are no

longer appropriate. The Decentralized Capacitated Facility Selection Problem addresses

this problem and assumes a hierarchical decision structure where the principal firm only

decides which plants to open. The plants are independent from the principal firm and

want to minimize their operational costs. The principal firm, on the other hand, wants

to minimize plant opening costs and the opportunity costs for unused capacities. This

problem is modelled as a bilevel problem and transformed into a mixed-integer linear

program using Karush-Kuhn-Tucker conditions. We apply Benders decomposition to

this mixed-integer linear program and show that large instances can be solved up to 400

times faster than the mixed-integer linear program.

5.1 Introduction

Over the past decades, many companies have spread their production over several plants

stretching over one or more countries. The advantages of these decentralized production

systems can be cost reduction, efficiency improvement or also quick reaction to market

changes even though more coordination effort is needed. Ertogral and David Wu (2000)

showed that monolithic models, which use centralized decision schemes, should not be

used in decentralized environments. Therefore, Cao and Chen (2006) proposed a bilevel

model for plant selection in decentralized production environments.

The authors replaced the follower problem with its KKT conditions. Since the result-
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ing MILP could only solve small instances, we propose a solution method based on BD.

The numerical results show that even large instances can be solved very fast.

The remainder of this chapter is structured as follows: First, we introduce the bilevel

formulation of the DCFSP. In Section 5.3, this formulation is transformed into a MILP

and solved with BD. The numerical results are shown in Section 5.4 before we finish the

chapter with the conclusion.

5.2 Decentralized Facility Selection Problem

We define the DCFSP as introduced in (Cao and Chen, 2006). The DCFSP assumes a

decentralized manufacturing environment. A principal firm, the leader, decides which

plants out of a set of plants I to open. Each plant i ∈ I has fixed opening costs fi and

an available production capacity Ci. Unused capacity in plant i is penalized with the

opportunity costs pi if the plant is opened. The principal firm wants to minimize the

sum of opening costs and opportunity costs.

The followers are the plants that have to satisfy the demand dj of a set of products

j ∈ J . Each plant has a capacity consumption ratio aij for processing one unit of product

j in plant i. Using one unit of production capacity of plant i costs wi and transferring

one unit of product j to that plant costs rij. Moreover, Ji ⊆ J defines the set of products

that can be produced in plant i and Ij ⊆ I defines the set of plants capable of producing

product j. The plants operate independently of the principal firm and want to minimize

production and transportation costs while cooperation among the plants exists.

The leader decision is modeled with the binary variable yi for i ∈ I, which is 1 if the

plant i is opened and 0 if not. The continuous follower variables xij define the fraction

of the demand of product j produced in plant i.

The leader problem is then defined as follows:

min
∑
i∈I

fiyi +
∑
i∈I

pi

(
Ciyi −

∑
j∈Ji

djaijxij

)
(5.1)

s.t.yi ∈ {0, 1} ∀i ∈ I (5.2)

The opening costs and the opportunity costs are minimized while the binary condition
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is ensured. This problem is optimized subject to the follower problem:

min
∑
i∈I

wi

(∑
j∈Ji

djaijxij

)
+
∑
i∈I

∑
j∈Ji

djrijxij (5.3)

s.t.
∑
i∈Ij

xij = 1 ∀j ∈ J (5.4)

∑
j∈Ji

djaijxij ≤ Ciyi ∀i ∈ I (5.5)

xij ≥ 0 ∀i ∈ I, j ∈ Ji (5.6)

In the objective function, the production costs (first term) and the transfer costs (second

term) are minimized. Equation (5.4) ensures that the demand is satisfied. Constraint

(5.5) restricts the production quantity of each plant to its capacity if it is open and to

zero if it is closed.

5.3 Solution method

In this section, we first show the transformation of the bilevel model to a MILP as

proposed by Cao and Chen (2006) and then apply BD.

5.3.1 Mixed-integer linear program

Cao and Chen (2006) replace the follower problem (5.3) - (5.6) of the previous section

with its KKT conditions and assume the partial cooperation assumption (Bard, 1998).

For the primal constraints (5.4) and (5.5), the dual variables tj and ui are introduced.

Then, the LBP can be transformed into the following MIP:

min
∑
i∈I

fiyi +
∑
i∈I

pi

(
Ciyi −

∑
j∈Ji

djaijxij

)
(5.7)

s.t.
∑
i∈Ij

xij = 1 ∀j ∈ J (5.8)

∑
j∈Ji

djaijxij ≤ Ciyi ∀i ∈ I (5.9)∑
i∈I

∑
j∈Ji

(widjaij + djrij)xij ≤
∑
j∈J

tj +
∑
i∈I

Ciyiui (5.10)

tj + djaijui ≤ widjaij + djrij ∀i ∈ I, j ∈ Ji (5.11)
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tj ∈ R ∀j ∈ J (5.12)

ui ≤ 0 ∀i ∈ I (5.13)

xij ≥ 0 ∀i ∈ I, j ∈ Ji (5.14)

yi ∈ {0, 1} ∀i ∈ I (5.15)

Constraint (5.11) is the dual constraint for the primal variables xij and equation (5.10)

is the optimality condition. The non-linear optimality condition can be replaced by the

following set of linear constraints by introducing the auxiliary variable µi and a Big

M(Cao and Chen, 2006):∑
i∈I

∑
j∈Ji

(widjaij + djrij) ≤
∑
j∈J

tj +
∑
i∈I

µi (5.16)

µi − Ciui ≤ −Myi +M ∀i ∈ I (5.17)

µi − Ciui ≥ 0 ∀i ∈ I (5.18)

µi ≥ −Myi ∀i ∈ I (5.19)

µi ≤ 0 ∀i ∈ I (5.20)

Constraints (5.17) - (5.20) ensure that µi takes the value Ciui if yi is 1 and the value 0

for yi = 0.

5.3.2 Benders decomposition

The MILP of the previous section has complicating variables yi and the easier continuous

variables xij, tj, ui and µi. Following Benders (1962), we divided this problem into two

easier solvable problems and solved it with BD. The outline of the BD is shown in

algorithm 4.

Dual slave problem

The slave problem is defined by fixing the binary decision variables to a solution y∗. The

part of the objective function not depending on y is minimized subject to all constraints

of the MILP for the fixed y:

min −
∑
i∈I

pi
∑
j∈Ji

djaijxij (5.21)

s.t.(5.8), (5.9), (5.16)− (5.20), (5.11)− (5.14)
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Algorithm 4: Benders decomposition: Main structure

1 Set y∗i = 1 ∀i ∈ I (or take any other feasible solution of y) and let z∗ =∞ be the
upper bound.

2 For y = y∗, solve the Benders slave problem and let zS be the optimal objective
value of the slave problem. If the slave problem is bounded, add the corresponding
optimality cut to the master problem and update the upper bound
z∗ = min{z∗, zS}. If the slave problem is unbounded, add the feasibility cut to the
master problem.

3 Resolve the master problem. Save the solution y∗ and let zM be the new solution of
the master problem.

4 If z∗ = zM : Stop, otherwise: Go to Step 2.

In BD, the dual of the slave problem is solved. Therefore, the dual variables αj, βi,

δij, γ, λ1
i , λ

2
i and λ3

i , which correspond to the primal constraints (5.8), (5.9), (5.11) and

(5.16) - (5.19), are introduced. The dual constraints (5.23) - (5.26) correspond to the

primal variables xij, tj, ui and µi.

max αj +
∑
i∈I

Ciy
∗
i βi +

∑
i∈I

∑
j∈Ji

(widjaij + djrij) δij

+
∑
i∈I

(−My∗i +M)λ1
i −

∑
i∈I

My∗i λ
3
i (5.22)

s.t. αj + djaijβi + (widjaij + djRij) γ ≤ −pidjaij ∀i ∈ I, j ∈ Ji (5.23)

− γ +
∑
i∈Ij

δij = 0 ∀j ∈ J (5.24)

− Ciλ1
i − Ciλ2

i +
∑
j∈Ji

djaijδij ≥ 0 ∀i ∈ I (5.25)

− γ + λ1
i + λ2

i + λ3
i ≥ 0 ∀i ∈ I (5.26)

αj ∈ R ∀j ∈ J (5.27)

βi, λ
1
i ≤ 0 ∀i ∈ I (5.28)

γ ≤ 0 (5.29)

δij ≤ 0 ∀i ∈ I, j ∈ Ji (5.30)

λ2
i , λ

3
i ≥ 0 ∀i ∈ I (5.31)
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Pareto-optimal cuts

Since the follower problem is a transportation problem which is often highly degenerated,

the convergence of the BD can be slow. Magnanti and Wong (1981) proposed a method

to strengthen the generated optimality cuts by solving an auxiliary problem. These cuts

are not dominated by any other cut for that subproblem and are called pareto-optimal

cuts.

Let yc be a core point of the master problem, which is a point in the relative interior of

the feasible region of the master variables {0, 1}|I|, and zS be the objective value of the

dual subproblem (5.22) - (5.31). For calculating such a pareto-optimal cut, the following

auxiliary problem is solved:

max αj +
∑
i∈I

Ciy
c
iβi +

∑
i∈I

∑
j∈Ji

(widjaij + djrij) δij

+
∑
i∈I

(−Myci +M)λ1
i −

∑
i∈I

Myciλ
3
i (5.32)

s.t. αj +
∑
i∈I

Ciy
∗
i βi +

∑
i∈I

∑
j∈Ji

(widjaij + djrij) δij

+
∑
i∈I

(−My∗i +M)λ1
i −

∑
i∈I

My∗i λ
3
i = zS (5.33)

(5.23)− (5.31)

The dual slave problem is only extended by equation (5.33), ensuring that an optimal

slave problem solution is chosen. Magnanti and Wong (1981) proved that the modified

objective function calculates a pareto-optimal cut.

Master problem

Let (α∗, β∗, γ∗, δ∗, λ1∗, λ2∗, λ3∗) be the optimal solution of the dual slave problem. If the

dual slave problem is bounded, then the following optimality cut is added the master

problem:

z ≥αj +
∑
i∈I

Ciyiβ
∗
i +

∑
i∈I

∑
j∈Ji

(widjaij + djrij) δ
∗
ij

+
∑
i∈I

(−Myi +M)λ1
i
∗ −

∑
i∈I

Myiλ
3
i
∗

(5.34)
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If the dual slave problem is unbounded, the following feasibility cut is added to the

master problem:

0 ≥αj +
∑
i∈I

Ciyiβ
∗
i +

∑
i∈I

∑
j∈Ji

(widjaij + djrij) δ
∗
ij

+
∑
i∈I

(−Myi +M)λ1
i
∗ −

∑
i∈I

Myiλ
3
i
∗

(5.35)

If CO is the set of optimality cuts and CF the set of feasibility cuts that are added to

the master problem, the master problem is defined as follows:

min
∑
i∈I

(fi + piCi)yi + z (5.36)

s.t. co ∀co ∈ CO (5.37)

cf ∀cf ∈ CF (5.38)

yi ∈ {0, 1} ∀i ∈ I (5.39)

z ∈ R (5.40)

In each iteration, a new optimality or feasibility cut is added and the master problem is

solved until the convergence criterion is met.

5.4 Numerical study

To show the efficiency of the method, we generated a new set of DCFSP instances.

We used two Capacitated Facility Location Problem datasets as introduced by Avella

and Boccia (2009), where fixed opening costs and transportation costs are given. The

first set consists of 20 instances with 300 facilities and 1,500 customers which are used

as the 1,500 products. The second set consists of 20 instances with 500 facilities and

500 products. In both cases, four different demand/supply ratios r ∈ {5, 10, 15, 20}
with 5 instances each are used. The additional needed data was generated randomly

and in a similar way as in Cao and Chen (2006): The consumption ratio was set to 1

(aij = 1 ∀i ∈ I, j ∈ J). The costs pi and wi were generated randomly between 0.4 and

1.0 and pi = wi.

The tests were performed on an Intel(R) Core(TM) i7-3770 CPU, 3.4GHz, 16GB

RAM using Xpress 7.3 and the results are shown in Tables 5.1 and 5.2. We compared
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the run time of the BD with the run time of the MILP using the formulation of Cao and

Chen (2006). Moreover, the number of Benders iterations needed and the percent time

improvements are shown.

r BD iter. MILP (sec) BD (sec) time ratio (in %)

5

2 13529 34 0.2513
3 24457 74 0.3026
6 36071 68 0.1885
7 18840 150 0.7962
7 42690 101 0.2366

avg 5 27117.4 85.4 0.3150

10

6 44321 33 0.0745
5 27620 33 0.1195
3 14057 27 0.1921
2 4528 32 0.7067
4 4663 35 0.7506

avg 4 19037.8 32 0.1681

15

6 26109 30 0.1149
3 4503 18 0.3997
6 83820 40 0.0477
2 2099 19 0.9052

14 19351 72 0.3721

avg 6.2 27176.4 35.8 0.1317

20

3 1623 19 1.1707
3 2829 17 0.6009
3 6647 20 0.3009

12 9373.9 64 0.6827
6 8227.3 39 0.474

avg 5.4 5740.04 31.8 0.5540

Table 5.1: Computational results for 300× 1500 instances of Avella and Boccia (2009)

The results show that the BD can solve all instances significantly faster than the MILP

formulation. The average run time for the first set with 300 facilities was 46.25 seconds

and 5.15 iterations in the BD. Compared to the MILP, this is an improvement of more

than 99% on average. For the second set, all instances were solved on average in 8.55

seconds and with 2.95 iterations using BD, which is again an improvement of more than

99%. Compared to the first set, the run time is even less. As the number of iterations
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r BD iter. MILP (sec) BD (sec) time ratio (in %)

5

3 432 10 2.3148
1 12762 6 0.0470
2 20179 10 0.0496
2 4836 11 0.2275
1 5046 9 0.1784

avg 1.8 8651 9.2 0.106346

10

2 320 7 2.1875
4 547 10 1.8282
2 261 7 2.682
2 526 6 1.1407
2 4420 7 0.1584

avg 2.4 1214.8 7.4 0.609154

15

4 2931 9 0.3071
1 1368 5 0.3655
6 2908 13 0.447
3 2755 7 0.2541
4 615 9 1.4634

avg 3.6 2115.4 8.6 0.406542

20

1 1437 5 0.3479
10 2701 17 0.6294
5 3622 11 0.3037
2 389 6 1.5424
2 511 6 1.1742

avg 4 1732 9 0.51963

Table 5.2: Computational results for 500× 500 instances of Avella and Boccia (2009)
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needed was smaller and the slave problem depends on the number of products, it is clear

that in the first set with 1,500 products, the run time of the slave problem is higher.

Moreover, as many as 37 out of 40 instances were solved in less than 10 iterations.

5.5 Conclusion

We proposed a BD algorithm for solving the DCFSP. The bilevel formulation is trans-

formed into a MILP and then solved with BD. The numerical results show that the run

time is significantly improved by the algorithm and real-size instances can be solved

efficiently. Admittedly, at this stage the model still looks rather stylized and the for-

mulation should be extended to a real word problem by including further aspects like

demand uncertainty.
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Chapter 6

Benders decomposition for the Hazmat

Transport Network Design Problem

We propose a new method for solving the Hazmat Transport Network Design Problem.

In this problem, the government wants to reduce the risk of hazardous accidents for

the population by restricting the shipment of hazardous goods on roads. When taking

that decision, the government has to anticipate the reaction of the carriers who want to

minimize the transportation costs by solving a shortest path problem. We use a bilevel

formulation that guarantees stable solutions and transform this model into a mixed-

integer linear program by applying the Karush-Kuhn-Tucker conditions. This model

is solved to optimality with a multi-cut Benders decomposition. The numerical study

shows the computation benefits of the method and run time savings of more than 90%.

Moreover, we show that the bilevel model reduces the risk by 35% on average compared

to a two-step decision process, which does not anticipate the carriers reaction.

6.1 Introduction

The transportation of hazardous materials is essential for most countries. In 2013,

294.75 million tons of hazardous materials were transported in and through Germany.

With 7.15%, hazmat has only a small share of the transported volume in Germany.

(Statistisches Bundesamt Wiesbaden, 2015) However, the consequences of hazardous

accidents are tremendous, as they can cause significant damages to the area around the

accident.

One of the worst accidents of this kind in recent history happened in July 2013 in

Lac-Mégantic, QC in Canada. A driverless train with 72 tank cars of petroleum crude

oil derailed in the city center and caused the death of at least 42 people. Moreover, at
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least 30 buildings and 115 businesses were destroyed and it took almost two days for the

firefighters to get the situation under control.

According to Erkut et al. (2007), the consequences of such accidents are not only

injuries and fatalities, property damage and cleanup costs but also evacuation, product

loss, traffic incident delay or environmental damages. To better react in the case of an

accident, transported hazmat needs to be indicated and is categorized into the following

nine classes: explosives, gases, flammable or combustible liquid, flammable solid, spon-

taneously combustible and dangerous when wet, oxidizer and organic peroxide, poison

and poison inhalation hazard, radioactive, corrosive and, lastly, miscellaneous.

Besides technical improvements and regulations on how to transport these dangerous

goods, the regulation of the routing is an important aspect of risk reduction. The

government can allow only specific parts of a road network for the shipment of hazardous

materials to risk of accidents. Since the carriers are interested in minimizing their cost

while satisfying their demand, they are looking for a cost minimal path in the network.

Since these two objectives are not the same, the government has to anticipate the reaction

of the follower and the problem is modelled as an LBP which is known as the HTNDP.

The contribution of this chapter is first to apply BD to a known mixed-integer formu-

lation for the HTNDP. The numerical study shows that our approach offers significant

computational benefits. Second, the necessity of the bilevel formulation is shown by

comparing the hierarchical solution to a two-step decision process in which the follower

can choose his path in a network that was optimized by neglecting the reaction of the

follower. Finally, we show that the price of anarchy increases with the number of com-

modities.

This chapter is structured as follows. In Section 6.2, the bilevel formulation is pre-

sented. The solution algorithm is introduced in Section 6.3. The numerical results are

shown in Section 6.4 and the chapter ends with a conclusion.

6.2 Bilevel formulation

The transportation network is represented by a graph G = (N,A) with a set of nodes

N and a set of arcs A. K defines the set of commodities shipped through the network.

Each commodity k ∈ K is defined by an origin ok ∈ N , a destination dk ∈ N and the

transport volume φk. For each arc (i, j) ∈ A, the transportation costs cij and for each

arc (i, j) ∈ A and commodity k ∈ K the transportation risk rkij are given. According to

Erkut and Verter (1998), this risk is the probability of an accident multiplied with the
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accumulated effected population in the area of arc (i, j).

The leader wants to minimize the total risk in the network by deciding whether an arc

(i, j) ∈ A can be used for the shipment with the binary decision variable yij. Therefore,

the leader anticipates the reaction of the follower - the carriers who want to ship the

commodities through the network in a cost minimal way. The binary follower decision

variable xkij is 1 if commodity k is shipped over arc (i, j) ∈ A and 0 if not.

The leader problem is defined as follows:

min
∑
k∈K

∑
(i,j)∈A

rkijφkx
k
ij (6.1)

s.t. yij ∈ {0, 1} ∀(i, j) ∈ A (6.2)

The total risk in the network is minimized while the system decides whether an arc is

allowed for shipment or not.

The follower problem is a classical shortest path problem (Hillier and Lieberman,

2009), which is decomposable within the commodities:

min
∑
k∈K

 ∑
(i,j)∈A

ckijx
k
ij −

1

R

∑
(i,j)∈A

rkijx
k
ij

 (6.3)

s.t.
∑

(i,j)∈A
xkij −

∑
(j,l)∈A

xkjl =


0, if j 6= ok, dk

−1, if j = ok

1, if j = dk

∀j ∈ N, k ∈ K (6.4)

xkij ≤ yij ∀(i, j) ∈ A, k ∈ K (6.5)

xkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (6.6)

Equation (6.4) is a flow conservation constraint and constraint (6.5) ensures that only

arcs that are allowed by the follower can be used. The objective function minimizes the

transportation costs for each commodity in the first term. The second term was added

by Amaldi et al. (2011) to guarantee stable solutions. R is defined as the maximum

risk of a commodity in the network. If the transportation costs cij are integer, then, for

a commodity that has more than one minimum-cost-path, the shortest path with the

maximum risk will be chosen since the second term will have the highest negative value.

However, a longer path cannot be chosen since the value of the second term can take

at maximum the value one, which is the difference between two paths. This ensures
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that the leader assumes the worst case and a pessimistic bilevel problem is defined.

Removing the second term would give an optimistic formulation where the government

would assume that carriers will always choose the path with the lowest risk among the

shortest paths (if more than one exist).

6.3 Solution approach

In this section, the solution approach based on the idea of Fontaine and Minner (2014,

2016a), is shown. First, the bilevel formulation is transformed into a MILP. In a second

step, a multi-cut BD (Birge and Louveaux, 1988) is applied to the MILP.

6.3.1 Mixed-integer linear program

Because of the total unimodularity of the follower problem (6.3) - (6.6), the binary

condition (6.6) can be relaxed by the following equation (Amaldi et al., 2011):

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (6.7)

Equation (6.5) ensures that xkij ≤ 1 holds. This linear follower problem can be replaced

by the KKT conditions and transforms the bilevel problem into a non-linear MIP (Bard,

1998).

min
∑
k∈K

∑
(i,j)∈A

rkijφkx
k
ij (6.8)

s.t.
∑

(i,j)∈A
xkij −

∑
(j,l)∈A

xkjl =


0, if j 6= ok, dk

−1, if j = ok

1, if j = dk

∀j ∈ N, k ∈ K (6.9)

xkij ≤ yij ∀(i, j) ∈ A, k ∈ K (6.10)∑
(i,j)∈A

(cij − rkij/R)xkij ≤ ukdk − u
k
ok

+
∑

(i,j)∈A
vkijyij ∀k ∈ K (6.11)

ukj − uki + vkij ≤ cij − rkij/R ∀(i, j) ∈ A, k ∈ K (6.12)

vkij ≤ 0 ∀(i, j) ∈ A, k ∈ K (6.13)

ukj ∈ R ∀j ∈ N, k ∈ K (6.14)

xkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (6.15)
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yij ∈ {0, 1} ∀(i, j) ∈ A (6.16)

ukj define the dual variables of the follower constraint (6.4) and vkij of constraint (6.5).

Equation (6.12) is the dual constraint of the primal variable xkij. As in (Cao and Chen,

2006), the optimality condition (6.11) can be linearized by introducing the auxiliary

variable wkij and a Big M and by replacing (6.11) with the following terms:

∑
(i,j)∈A

(cij − rkij/R)xkij ≤ ukdk − u
k
ok

+
∑

(i,j)∈A
wkij ∀k ∈ K (6.17)

wkij ≤ vkij +M(1− yij) ∀(i, j) ∈ A, k ∈ K (6.18)

wkij ≥ vkij ∀(i, j) ∈ A, k ∈ K (6.19)

wkij ≥ −Myij ∀(i, j) ∈ A, k ∈ K (6.20)

wkij ≤ 0 ∀(i, j) ∈ A, k ∈ K (6.21)

6.3.2 Multi-cut Benders decomposition

BD (Benders, 1962) divides the problem into an integer master problem and a continuous

slave problem. The decision variables are divided into the complicating binary variables

yij and the easier continuous variables xij, u
k
j , v

k
ij and wkij. Both problems are solved

iteratively. In the multi-cut version by Birge and Louveaux (1988), the slave problem

is further decomposed into |K| slave subproblems. These slave subproblems can be

solved in parallel and each subproblem generates a cut that can be added to the master

problem.

An outline of the structure of the multi-cut BD is given in Algorithm 5.

Slave problem

The slave subproblems are given by fixing y with y∗ and solving (6.8) - (6.10), (6.12) -

(6.15) and (6.17) - (6.21) for each k ∈ K in parallel.

Since the dual variables of the slave problem define the optimality and feasibility cuts

of the master problem, the dual slave subproblems are needed. For this formulation, the

dual variables αj,βij, γ, δij, λ
1
ij, λ

2
ij and λ3

ij for the primal constraints (6.9), (6.10), (6.12)

and (6.17) - (6.20) are introduced. The dual objective function is maximized subject
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Algorithm 5: Multi-cut Benders decomposition: Main structure

1 Set y∗ to any feasible solution of y (e.g. yij = 1 ∀(i, j) ∈ A) and the upper bound
z∗ =∞.

2 For y = y∗, solve for each k ∈ K the subproblems of the slave problem in parallel.
Let zSk be the optimal solution value of subproblem k. If all slave problems are
bounded, add |K| optimality cuts to the master problem and update the upper
bound z∗ = min{z∗,

∑
k∈K z

S
k }. Else add a feasibility cut to the master problem.

3 Solve the master problem and save the solution y∗. Let zM be the solution of the
master problem.

4 Stop if z∗ = zM , otherwise go to Step 2.

to the dual constraints (6.23) - (6.26), which correspond to primal decision variables

xij,uj,wij and vij. Here, χ[a=b] defines an indicator function that is 1 if a = b and 0

otherwise.

max αdk − αok +
∑

(i,j)∈A
βijy

∗
ij +

∑
(i,j)∈A

(
cij − rkij/R

)
δij

+
∑

(i,j)∈A

(
M(1− y∗ij)λ1

ij −My∗ijλ
3
ij

)
(6.22)

s.t. αj − αi + βij + γ
(
cij − rkij/R

)
≤ rkijφk ∀(i, j) ∈ A (6.23)∑

(i,j)∈A
δij −

∑
(j,l)∈A

δjl − γχ[j=dk] + γχ[j=ok] = 0 ∀j ∈ N (6.24)

− γ + λ1
ij + λ2

ij + λ3
ij ≥ 0 ∀(i, j) ∈ A (6.25)

δij − λ1
ij − λ2

ij ≥ 0 ∀(i, j) ∈ A (6.26)

αj ∈ R ∀j ∈ N (6.27)

βij, δij, λ
1
ij ≤ 0 ∀(i, j) ∈ A (6.28)

γ ≤ 0 (6.29)

λ2
ij, λ

3
ij ≥ 0 ∀(i, j) ∈ A (6.30)

If a dual subproblem is unbounded, it is resolved with the following additional con-
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straint to calculate the needed extreme ray for the feasibility cut:

αdk − αok +
∑

(i,j)∈A
βijy

∗
ij +

∑
(i,j)∈A

(
cij − rkij/R

)
δij+∑

(i,j)∈A

(
M(1− y∗ij)λ1

ij −My∗ijλ
3
ij

)
≤M2 (6.31)

If M2 is a large number that does not cut off any extreme point but only restricts the

extreme rays, the solution of the bounded problem returns the needed extreme ray.

Pareto-optimal cuts

The convergence of BD is highly dependent on the strength of the generated cuts. If

the dual subproblem is degenerated, several cuts exist for the same master solution.

Magnanti and Wong (1981) proposed a method to generate pareto-optimal cuts. These

cuts are not dominated by any other cut and can improve the convergence of the BD

significantly.

To generate a pareto-optimal cut, a core point, a point in the relative interior of the

feasible region of the complicating variables {0, 1}|A|, yc is needed. Moreover, let zk be

the objective value of the problem (6.22) - (6.30). Then the following auxiliary problem

is solved:

max αdk − αok +
∑

(i,j)∈A
βijy

c
ij +

∑
(i,j)∈A

(
cij − rkij/R

)
δij

+
∑

(i,j)∈A

(
M(1− ycij)λ1

ij −Mycijλ
3
ij

)
(6.32)

s.t. αdk − αok +
∑

(i,j)∈A
βijy

∗
ij +

∑
(i,j)∈A

(
cij − rkij/R

)
δij

+
∑

(i,j)∈A

(
M(1− y∗ij)λ1

ij −Myijλ
3
ij

)
= zk (6.33)

(6.23)− (6.30)

Constraint (6.33) forces the model to choose a solution that has the optimal objective

value zk and the objective function generates the dual values of a pareto-optimal cut.
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Master problem

Let αk∗j ,βk∗ij , γk∗, δk∗ij , λ1k∗
ij , λ2k∗

ij and λ3k∗
ij be the optimal solution of the solved subprob-

lems. If all subproblems are bounded, the following optimality cuts are added:

αk∗dk − α
k∗
ok

+
∑

(i,j)∈A
βk∗ij yij +

∑
(i,j)∈A

(
cij − rkij/R

)
δk∗ij

+
∑

(i,j)∈A

(
M(1− yij)λ1k∗

ij −Myijλ
3k∗
ij

)
≤ zk (6.34)

If one or more subproblems of the slave problem are unbounded, the following feasi-

bility cut for all commodities is added:

∑
k∈K

αk∗dk − αk∗ok +
∑

(i,j)∈A
βk∗ij yij +

∑
(i,j)∈A

(
cij − rkij/R

)
δk∗ij

+
∑

(i,j)∈A

(
M(1− yij)λ1k∗

ij −Myijλ
3k∗
ij

) ≤ 0 (6.35)

With CO being the set of optimality cuts and CF the set of feasibility cuts, the master

problem can be defined as follows:

min
∑
k∈K

zk (6.36)

s.t. co ∀co ∈ CO (6.37)

cf ∀cf ∈ CF (6.38)

zk ∈ R ∀k ∈ K (6.39)

yij ∈ {0, 1} ∀(i, j) ∈ A (6.40)

6.4 Numerical study

To show the computational efficiency of our approach, we compared the BD with the

MILP formulation. Both were implemented in Xpress 7.6. For all calculations, we used

an Intel Core i7 with 8 threads and 32GB RAM and the maximum calculation time was

set to 7,200 seconds. The graph of the well-known Sioux-Fall network (LeBlanc, 1975),

which consists of 24 nodes and 76 arcs, was used. The cost and risk parameters for each

arc were generated randomly between 1 and 100. We used different scenarios defined by
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the number of commodities |K| ∈ {60, 80, 100, 120, 140}. For each of these scenarios, 10

instances were generated. The origin and destination were chosen randomly among all

nodes and the demand was also choosen randomly between 1 and 20.

Tables 6.1 - 6.5 shows the detailed numerical results. For each instance, the number of

iterations in the BD, the run time for both methods in seconds and the time saving of the

BD compared to the MILP formulation are reported. Moreover, three objective values

are shown and compared: The objective value of the bilevel formulation (bilevel), the

over-regulated objective value if the leader ignores the reaction of the follower (decision

L) and the risk if the follower problem is solved with the leader decision of the previous

model (reaction F ). ∆1 is the difference between the hierarchical and the over-regulated

decision. ∆2 is the difference between the hierarchical decision and the risk of the follower

reaction to the over-regulated decision. Therefore, ∆2 shows the benefit of the bilevel

formulation.

BD time (sec) time-∆ objective values ∆1 ∆2

ID iter BD MILP (in %) bilevel decision L reaction F (in %) (in %)

1 72 322 2469 86.96 100638 94817 136492 5.78 35.63
2 25 89 142 36.86 86688 83219 106889 4.00 23.30
3 73 270 1041 74.09 80562 77043 108873 4.37 35.14
4 38 137 290 52.97 95020 90869 130758 4.37 37.61
5 49 215 179 -20.12 84602 82254 123210 2.78 45.63
6 86 339 1136 70.16 82664 78414 107325 5.14 29.83
7 67 253 5925 95.72 97409 91463 139850 6.10 43.57
8 47 168 471 64.41 95721 91609 155238 4.30 62.18
9 69 260 497 47.66 96960 91256 123013 5.88 26.87

10 48 163 24 -581.08 98399 95659 130633 2.78 32.76

avg 57.4 222 1217 81.80 4.55 37.25

Table 6.1: Computational results for |K| = 60

Already with 60 commodities, BD improves the run time by 81.8% on average. Only

in 2 instances, the MILP was still faster. However, these instances are much easier, as

the MILP run time is also notably smaller than in the other instances. Moreover, the

price of anarchy ∆1 is only 4.55%, but using that network design and letting the carriers

decide would increase the risk by 37.25% on average. This shows that the anticipation

of the carriers’ reaction is very important and the bilevel formulation should be used.

The average values of all five scenarios are shown in Table 6.6. Here, the scared

brackets behind the MILP run time indicate how many instances could not be solved to

optimality within the time limit.
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BD time (sec) time-∆ objective values ∆1 ∆2

ID iter BD MILP (in %) bilevel decision L reaction F (in %) (in %)

1 61 343 2805 87.77 122489 114663 159020 6.39 29.82
2 73 502 7200 93.03 142861 132014 180859 6.81 26.60
3 55 275 2646 89.60 130761 121269 168277 7.04 28.69
4 41 198 99 -100.82 128027 123130 167822 3.82 31.08
5 54 265 557 52.46 136840 130047 184285 4.96 34.67
6 65 343 5730 94.01 144302 135068 213513 6.23 47.96
7 52 264 1583 83.34 125852 118988 170898 5.45 35.79
8 54 266 876 69.62 115830 107383 152710 7.29 31.84
9 58 300 6142 95.11 131236 122525 169774 6.64 29.37

10 52 268 2115 87.33 109420 99982 152974 8.44 39.80

avg 56.5 302 2975 89.84 6.31 33.56

Table 6.2: Computational results for |K| = 80

BD time (sec) time-∆ objective values ∆1 ∆2

ID iter BD MILP (in %) bilevel decision L reaction F (in %) (in %)

1 48 295 1116 73.56 146890 138272 188854 5.87 28.57
2 43 255 1398 81.75 147985 140961 212845 4.75 43.83
3 60 411 3789 89.15 145249 133565 206689 8.04 42.30
4 77 573 7200 92.04 148284 136453 194195 7.76 30.96
5 130 3054 7200 57.59 155183 142429 207375 7.96 33.63
6 79 569 7200 92.09 161911 148191 220157 8.47 35.97
7 55 369 6055 93.90 158819 150242 213160 5.40 34.22
8 60 419 5894 92.89 168848 159336 236511 5.63 40.07
9 76 536 7200 92.55 161603 149980 234453 7.19 45.08

10 49 320 4907 93.48 187248 172794 263801 7.72 40.88

avg 67.7 680 5196 86.91 6.88 37.55

Table 6.3: Computational results for |K| = 100

74



6.4 Numerical study

BD time (sec) time-∆ objective values ∆1 ∆2

ID iter BD MILP (in %) bilevel decision L reaction F (in %) (in %)

1 53 391 7200 94.57 177330 165693 254897 6.56 43.74
2 57 410 7200 94.31 187687 169318 249294 10.86 32.82
3 68 584 6781 91.39 195757 181294 244269 7.45 24.78
4 50 425 1503 71.70 193484 182625 263738 5.26 36.31
5 64 498 5477 90.91 180419 169263 261322 6.18 44.84
6 54 377 2580 85.38 213904 201979 285084 5.57 33.28
7 49 353 5529 93.62 187417 174648 244022 6.81 30.20
8 102 988 7200 86.28 187545 174518 261787 6.61 39.59
9 75 594 7200 91.75 192739 179740 271156 6.62 40.69

10 82 1045 7200 85.48 195350 176453 258597 9.60 32.38

avg 65.4 566 5787 90.21 7.15 35.86

Table 6.4: Computational results for |K| = 120

BD time (sec) time-∆ objective values ∆1 ∆2

ID iter BD MILP (in %) bilevel decision L reaction F (in %) (in %)

1 80 1006 7200 86.02 226529 207033 311925 8.11 37.70
2 56 586 7200 91.86 202219 184667 273781 8.65 35.39
3 99 1713 7200 76.21 220495 201193 284490 8.33 29.02
4 67 738 7200 89.75 236130 215162 306186 8.46 29.67
5 66 672 7200 90.66 209856 191348 288013 8.82 37.24
6 48 441 7200 93.87 232214 212891 297931 8.32 28.30
7 63 576 7200 92.00 218428 201932 290763 7.55 33.12
8 61 582 7200 91.92 219693 204017 282384 7.14 28.54
9 73 675 7200 90.62 237787 217502 319097 8.53 34.19

10 57 554 7200 92.31 214507 198215 292341 7.60 36.29

avg 67 754 7200 89.52 8.15 32.95

Table 6.5: Computational results for |K| = 140
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time (sec) time-∆ ∆1 ∆2

K BD iter BD MILP (in %) (in %) (in %)

60 57.4 222 1217 [0] 81.80 4.55 37.25
80 56.5 302 2975 [1] 89.84 6.31 33.56

100 67.7 680 5196 [4] 86.91 6.88 37.55
120 65.4 566 5787 [5] 90.21 7.15 35.86
140 67 754 7200 [10] 89.52 8.15 32.95

Table 6.6: Average computational results

The results show that the average number of iterations of the BD did not increase

significantly when the number of commodities was increased. The increased run time

of the BD is caused by the higher number of slave subproblems that need to be solved.

However, the run time of the MILP model increases significantly. This also leads to the

increased number of instances that cannot be solved to optimality within the time limit.

In the case of 140 commodities, no instance could be solved to optimality anymore. Even

with a maximum run time of 14,400 seconds (4 hours), we could not find the optimal

solution for any of these instances and the run time benefit of the BD would just increase.

The BD already improves the run time in the smallest scenario by 82% on average. For

the larger instances, the improvement increases further up to an average improvement

of 90%, even though many MILP models were stopped after the predefined time limit.

The comparison of the objective values shows that the average difference between the

bilevel and the over-regulated formulation ∆1 increases almost linearly in the number of

commodities. The increase is clear, as the over-regulated model can directly influence

the flow of each commodity. However, the bilevel model can only decide for all com-

modities and the follower can still react. For a government, this means that different

dangerous goods classes help to reduce the risk without directly regulating the carriers’

transportation path.

The comparison with the follower reaction ∆2 shows the importance of the bilevel

formulation as the reaction leads to an increased risk of 35% on average.

6.5 Conclusion

We proposed a multi-cut BD method for solving the HTNDP. The bilevel problem is

transformed into a MILP. Because of the multi-follower structure, the slave problem

can be decomposed into independent subproblems and solved efficiently. The numerical
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6.5 Conclusion

results show that, especially for a large number of shipments, the run time improvements

are significant and optimal solutions can be found fast. Moreover, the importance of

the bilevel formulation is shown and that the classification of dangerous goods can help

reduce the risk without regulating each shipment directly.
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Chapter 7

Population-based Risk Equilibration for

the Capacitated Multi-Mode Hazmat

Transport Network Design Problem

The shipment of hazardous materials is necessary for most countries and many of these

products are flammable, explosive or even radioactive. Despite high security standards,

accidents still happen and the transportation of hazmat causes fear among the population

who faces the risk of those accidents. Therefore, the society requests a fair distribution

of risk by the authorities. To fairly distribute the risk, we propose a population-based

risk definition that evaluates the risk in each population center. Moreover, we propose

different objective functions for equilibrating the risk and extend the bilevel Hazmat

Transport Network Design Problem by considering several transportation modes. In

this problem, the government wants to equilibrate the risk among the population cen-

ters by restricting links to the shipment of hazardous goods. When taking that decision,

the government has to anticipate the carriers’ reaction who want to minimize the trans-

portation costs for their shipments. This bilevel problem is transformed into single-level

mixed-integer linear programs and solved with Xpress. In the numerical results, we show

that just equilibrating risk can double the total risk in the network. Both objectives

have a convex correlation and therefore an increase of 10% in total risk can already

distribute the risk significantly better. Moreover, compared to classical approaches in

the literature, we can distribute the risk similarly without increasing the total risk.
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7.1 Introduction

Hazardous material accidents can have tremendous consequences for the population.

One of the worst accidents of this kind in recent history happened in July 2013 in

Lac-Mégantic, QC in Canada. A driverless train with 72 tank cars of petroleum crude

oil derailed in the city center and caused the death of at least 42 persons. Moreover,

at least 30 buildings and 115 businesses were destroyed and it took almost 2 days to

control the fire. However, the transport of hazardous materials is essential not only for

industrial countries like Canada, Germany and the United States but also for developing

countries. The four most frequently shipped hazardous materials are - with 80% of the

transported volume in Canada - crude petroleum, gasoline, fuel oils and non-metallic

minerals (Searag et al., 2015). According to Bureau of Transportation Statistics and

U.S. Census Bureau (2015), 2,580 million tons of hazardous materials where shipped

throughout the United States in 2012. 59.4% of them where transported by truck, 4.3%

by rail, 11% by water and 24.3% by pipeline in single mode transportation. Only 1%

was shipped via intermodal transportation. In Canada, railways have a much higher

relevance. In 2012, 26.1 million tons were transported by rail and 107.4 million tons

by truck. A different structure of the network in Germany, which, compared to North

America, is very dense, is reflected in the share of used transportation modes: In 2010,

56 million tons were transported by maritime transport, 48 million tons on inland wa-

terways, 63 million tons by rail and 140 million tons by trucks (Statistisches Bundesamt

Wiesbaden, 2012).

Thus, the consideration of different transportation modes is essential for the risk

calculation whenever you wish to regulate the transport of hazardous materials. The

different streams of research investigate the transportation of hazardous material either

on roads (e.g. Kara and Verter, 2004) or on rail (e.g. Verma et al., 2011). We want to

fill this gap by considering different transportation modes in the HTNDP.

Moreover, the society requests a fair distribution of risk over the population and the

government or authority wants to achieve that by deciding if a link of the network is

allowed for the transportation of hazardous materials or not. In the literature, the risk is

associated with arcs (e.g. Kara and Verter, 2004). This definition neglects the fact that

the risk in a population center is influenced by all the links in the area of the population

center. This is certainly true if the network consists of different modes, but also if for

example, several roads enter or pass by a city. In these definitions either the total risk

of the network is minimized or the maximum arc risk is minimized for equilibration. A
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fair distribution of risk, however, will then strongly depend on the number of arcs in a

population center. Moreover, if one arc has to transport a high amount of hazardous

material, the maximum risk in the network will be defined by that arc and the distri-

bution of all others arcs gets unimportant with respect to the maximum risk function.

Consequently, we introduce a new population-based risk definition to evaluate the risk

in population centers. For the fair distribution of risk among the population, different

equilibration functions are introduced and compared. The proposed multi-mode multi-

commodity bilevel formulation is transformed into a MILP and evaluated in a numerical

study to show the benefits of the concept over classical risk definitions. We show that

simply eqilibrating risk will also lead to a significant increase of the total risk in the

network. Besides, all population centers may end up worse than before. We investigate

the trade-off between risk equilibration and risk minimization and show a convex corre-

lation between these two objectives. Therefore, with a small increase of total risk in the

network, the distribution can be much better.

The contributions of this chapter are: (1) A new population-based definition of risk

and equity risk measures for hazardous material shipments, (2) an extension of the

HTNDP to multi-mode shipments and risk equilibration, (3) insights on the trade-off

between risk equilibration and risk minimization, (4) a comparison to existing models

from the literature (single-mode and maximum arc risk equilibration).

This chapter is structured as follows: In Section 7.2, the problem and its notation are

introduced. The population-based risk definition and possible risk measures are shown

in Section 7.3. Section 7.4 defines the multi-mode hazmat network design problem and

the transformation to a MILP. A numerical study is presented in Section 7.5 before

ending with the conclusion and an outlook.

7.2 Problem definition

The transportation network is represented by a graph G = (N,A) with a set of nodes

N and a set of arcs A. In a countrywide network, the nodes can be cities, facilities

or important points in the network. In a city network, the level of detail needs to

be much higher and the nodes represent junctions and entry and exit points of the

city. Moreover, we consider different transportation modes m ∈ M . Depending on the

detail of the model, these modes are the classical modes train, road, rail, air, water and

pipeline; if the risk is equilibrated in a city, we also define different vehicle types as a

transportation mode. Each arc (i, j) ∈ A can have a capacity limit of amij for each mode
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m ∈ M . Especially pipeline, rail and water transport systems have limitations on the

possible amount of shipments. The road is usually the only mode without any capacity

limits.

K is the set of commodities shipped through the network. Each commodity k ∈ K
is defined by an origin ok ∈ N , a destination dk ∈ N and the transport volume φk.

The transportation costs for shipping one unit of commodity k ∈ K on arc (i, j) ∈ A
with transportation mode m ∈ M are ckmij . Each commodity can be shipped partly via

different transportation modes. However, we do not allow inter-modal transportation, as

this is also not often the case in practice. The probability of an incident on arc (i, j) ∈ A
with mode m ∈M is given by σkmij . Similar to the literature, it is assumed that there is

no correlation between probabilities and therefore the probabilities are independent.

To equilibrate the risk among the population, we define a set of population centers C

with a population Pc. In a global optimization setting, a population center represents a

city; if the risk is equilibrated inside a city, these population centers need to represent

districts or parts of the city.

Finally, lmkcij defines the influence of an accident on arc (i, j) of commodity k on the

population c using mode m. This influence factor depends on the distance between the

population center and the arc, as well as the hazardous material type: The shorter the

distance and the more dangerous the material is, the higher is the influence factor. The

literature introduces different methods for calculating the influence of an accident on

an arc: Batta and Chiu (1988) use a fixed bandwidth around the route segment, Erkut

and Verter (1998) define a danger circle and Patel and Horowitz (1994) use a Gaussian

plume model to define the impact of airborne hazmat accidents. We assume that these

influence factors are given.

The problem is modeled as an LBP, where the leader is represented by the government

or an authority. They can decide if the mode of an arc of the network is allowed for the

transportation of hazardous materials or not and the decision is modeled by the binary

decision variable ymij . For simplification, the differentiation between specific hazardous

material types is ignored. But the model could easily be extended to include this more

realistic setting. The leader decision is subject to the follower optimization problem: The

carriers minimize their transportation costs subject to demand satisfaction and capacity

restrictions by deciding over the transportation percentage xkmij of commodity k ∈ K

shipped over arc (i, j) ∈ A on transportation mode m ∈M .
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7.3 Population-based risk definition and evaluation

In the network design literature (e.g. Alp, 1995; Bianco et al., 2009; Kara and Verter,

2004), the risk calculation is associated with arcs. With Pij being the accumulated

effected population in the area of arc (i, j), Erkut and Verter (1998) define the risk of

an arc by
∑

k∈K σ
km
ij Pijφkx

km
ij . In this section, we first introduce the population-based

risk definition. Then we define different possible risk equilibration measures and give an

example for the differences between the classical risk definition and ours.

7.3.1 Risk definition

In contrast to the classical network design definition of risk on arcs, we define the risk

for each population center c ∈ C. Following this definition, we assume that only one

accident can happen at the same time in a population center. Therefore, the accidents

on the different arcs through a center are independent and the expected risk is defined

as follows:

Rc(x) := Pc
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lkcij σ
km
ij φkx

km
ij (7.1)

Thus, the risk of a population center is the sum of the transported volume in the influence

area of the center weighted with the accident risk and the potential influence factor.

As long as the overall risk in the network is minimized, this risk definition is fully

equivalent to the traditional risk definition, only the order of summation is changed.

However, the differences can be huge for equilibrating the risk by minimizing the maxi-

mum risk.

The network of Figure 7.1 gives an example how the risk measures differ when we

minimize the maximum risk. We assume two OD-pairs: 10 units from 1 to 4 via road

and 10 units from 1 to 4 via train. In this example, an optimal solution will always

ship the 10 train units via 2, as no other solution exists. However, the road commodity

has two options, shipping either via 2 or via 3. If the maximum risk on each arc is

minimized, both paths are the same from a risk perspective. Both will cause a total

risk of 180 and no arc will be forbidden. The carrier will choose the cheapest path via

2 and population A will face a total risk of 280 and population B one of zero. If the

maximum population risk is minimized, the government will close the road between 1

and 2 and the carrier will have to ship via 3. The risk for population A would be 100

and for population B 180. In both solutions, the maximum risk on an arc is 90 and the
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1
cA

cB

2

3 4

(9,7)

(5,4)

(9,8)
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road (risk,cost)

train (risk,cost)
node
population center

Figure 7.1: Example of the population-based risk definition

classical risk in the network is 280. The only difference is a fair distribution of the risk

among the population.

7.3.2 Risk equilibration measures

Erkut and Ingolfsson (2005) summarized different measures the for evaluation of risk

on a path and Bianco et al. (2009) equilibrated the risk by minimizing the maximum

risk on an arc. Following these risk evaluation ideas, we introduce several possible risk

measures for the population-based risk definition of the whole network.∑
c∈C

Rc(x) Traditional/Overall risk (Trad) (7.2)

max
c∈C

Rc(x) Maximum risk (Max) (7.3)

1

|C|
∑
c∈C

∣∣∣∣∣Rc(x)− 1

|C|
∑
c′∈C

Rc′(x)

∣∣∣∣∣ Average deviation to mean (AdM) (7.4)

max
c∈C

∣∣∣∣∣Rc(x)− 1

|C|
∑
c′∈C

Rc′(x)

∣∣∣∣∣ Maximum deviation to mean (MdM) (7.5)

1

|C|(|C| − 1)

∑
c,c′∈C|c<>c′

|Rc(x)−Rc′(x)| Average deviation among all (AdA) (7.6)
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max
c,c′∈C|c<>c′

|Rc(x)−Rc′(x)| Maximum deviation among all (MdA) (7.7)

The traditional risk measure (7.2) sums the risk of all population centers and is equiv-

alent to the arc definition of the risk. The maximum risk (7.3) minimizes the maximal

risk in a population center. If each population center is defined by one arc, this defini-

tion is equivalent to the maximum arc risk definition by Bianco et al. (2009). The risk

measures (7.5) - (7.7) are different deviation measures which are all zero if the risk is

perfectly equilibrated and the risk in every population center is the same. While the first

two calculate the average and maximum deviation to the mean, the last two give the

average difference between all population centers and the maximum difference between

two population centers.

As many of these risk measures can still lead to very high risks in some population

areas, we introduce social bounds for the risk. Let L be the set of social bounds. Then

each population center c can have the bounds blc for each l ∈ L. If the risk is higher than

a bound, a penalty plc for each additional shipment is added to the objective value. The

new risk is calculated by adding the following term to the objective function.

+
∑
l∈L

plcPc max

0,
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lkcij σ
km
ij x

km
ij − blc

 (7.8)

This gives a piecewise linear increasing objective function. Such functions are also often

used to equilibrate the user’s travel time in traffic assignment problems (Sheffi, 1985).

Moreover, this idea is similar to the idea of conditional value at risk and perceived

risk with a risk-averse population. For example, Abkowitz et al. (1992) and Erkut and

Ingolfsson (2000) used a non-linear function f(x) = xα with α > 1 to take into account

that accidents with high probability and low consequences are less undesirable than low

probability-high consequence accidents.

7.4 Capacitated Multi-Mode Hazmat Transport

Network Design Problem

In the following section, we first introduce the bilevel formulation for the capacitated

multi-mode Hazmat Transport Network Design Problem (cmHTNDP) and explain how

the general definition can be adapted to specific network types. Then we transform the

model into a MILP.
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7.4.1 Bilevel formulation

Besides the already introduced decision variables xkmij and ymij , zkm is the percentage of

commodity k ∈ K shipped with mode m.

All introduced objective functions can be used in this leader problem and all shown

transformations of this section can be applied as well. Considering the maximum risk

objective function, the leader problem can be defined as follows:

min rmax (7.9)

s.t. Pc
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lkcij σ
km
ij φkx

km
ij ≤ rmax ∀c ∈ C (7.10)

rmax ≥ 0 (7.11)

ymij ∈ {0, 1} ∀(i, j) ∈ A,m ∈M (7.12)

The follower problem is a capacitated multi-mode transportation problem. The carri-

ers decide how many percent zkm of commodity k are shipped via transportation mode

m. Equation (7.14) is the flow conservation constraint and constraint (7.15) ensures that

the full demand is divided into the different transportation modes. Constraint (7.16)

is the capacity limit for each arc and transportation mode and equation (7.17) ensures

that only arcs which are allowed by the leader can be used. In the objective function,

the carriers’ system-optimum - the overall transportation costs - are minimized.

min
∑
k∈K

∑
m∈M

∑
(i,j)∈A

ckmij x
km
ij (7.13)

s.t.
∑

(i,j)∈A
xkmij −

∑
(j,l)∈A

xkmjl =


0, if j 6= ok, dk

−zkm, if j = ok

zkm, if j = dk

∀j ∈ N, k ∈ K,m ∈M (7.14)

∑
m∈M

zkm = 1 ∀k ∈ K (7.15)∑
k∈K

xkmij φk ≤ amijy
m
ij ∀(i, j) ∈ A,m ∈M (7.16)

xkmij ≤ ymij ∀(i, j) ∈ A, k ∈ K,m ∈M (7.17)

xkmij ≥ 0 ∀(i, j) ∈ A, k ∈ K,m ∈M (7.18)

zkm ≥ 0 ∀k ∈ K,m ∈M (7.19)
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This model is a generalization of the classical HTNDP. Depending on the network

and setting, several special cases are possible: By using only one transportation mode

and relaxing the capacity constraint, the follower problem is equivalent to the classical

shortest path problem by Kara and Verter (2004). In an urban area setting, the only

used transportation mode is the road with several vehicle types. Other transportation

modes like rail exist, but the decision might be taken in a global network design problem

and the caused risk of these modes can be included as constants into the leader objective

function. Therefore, the capacity restriction can be neglected and the follower problem

is a multi-mode shortest path problem.

By optimizing the risk distribution in a global setting like a province or a country,

the modes describe not only different vehicle types, but also rail, pipeline and water

transport. Because of the transport via rail, pipeline or water, the capacity restriction is

necessary and the follower problem becomes a multi-commodity transportation problem.

7.4.2 Transformation to a mixed-integer linear program

To transform the LBP into a non-linear mixed-integer program, we assume the partial

cooperation assumption and the follower problem can be replaced by the KKT conditions

(Bard, 1998).

min rmax (7.20)

s.t. (7.21)

Pc
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lkcij σ
km
ij φkx

km
ij ≤ rmax ∀c ∈ C (7.22)

∑
(i,j)∈A

xkmij −
∑

(j,l)∈A
xkmjl =


0, if j 6= ok, dk

−zkm, if j = ok

zkm, if j = dk

∀j ∈ N, k ∈ K,m ∈M (7.23)

∑
m∈M

zkm = 1 ∀k ∈ K (7.24)∑
k∈K

xkmij φk ≤ amijy
m
ij ∀(i, j) ∈ A,m ∈M (7.25)

xkmij ≤ ymij ∀(i, j) ∈ A, k ∈ K,m ∈M (7.26)∑
k∈K

∑
m∈M

∑
(i,j)∈A

ckmij x
km
ij ≤

∑
k∈K

vk +
∑
m∈M

∑
(i,j)∈A

amij s
m
ijy

m
ij +

∑
m∈M

∑
(i,j)∈A

∑
k∈K

tkmij y
m
ij (7.27)
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ukmj − ukmi + tkmij + φks
m
ij ≤ ckmij ∀(i, j) ∈ A, k ∈ K,m ∈M (7.28)

ukmok − u
km
dk

+ vk ≤ 0 ∀k ∈ K,m ∈M (7.29)

vk, ukmj ∈ R ∀j ∈ N, k ∈ K (7.30)

smij , t
km
ij ≤ 0 ∀(i, j) ∈ A, k ∈ K,m ∈M (7.31)

xkmij ≥ 0 ∀(i, j) ∈ A, k ∈ K,m ∈M (7.32)

zkm ≥ 0 ∀k ∈ K,m ∈M (7.33)

rmax ≥ 0 (7.34)

ymij ∈ {0, 1} ∀(i, j) ∈ A,m ∈M (7.35)

ukmj , vk, smij and tkmij define the dual variables of the follower constraints (7.14) - (7.17).

Equation (7.28) is the dual constraint of the primal variable xkij and equation (7.29) is

the dual constraint of the primal variable zkm.

As in (Cao and Chen, 2006), the optimality condition in (7.27) can be linearized by

introducing the auxiliary variables wmij and ŵkmij and a Big M̂ and by replacing (7.27)

with the following terms:

∑
k∈K

∑
m∈M

∑
(i,j)∈A

ckmij x
km
ij ≤

∑
k∈K

vk +
∑
m∈M

∑
(i,j)∈A

amijw
m
ij +

∑
m∈M

∑
(i,j)∈A

∑
k∈K

ŵkmij (7.36)

wmij ≤ smij + M̂(1− ymij ) ∀(i, j) ∈ A,m ∈M (7.37)

wmij ≥ smij ∀(i, j) ∈ A,m ∈M (7.38)

wmij ≥ −M̂ymij ∀(i, j) ∈ A,m ∈M (7.39)

wmij ≤ 0 ∀(i, j) ∈ A,m ∈M (7.40)

ŵkmij ≤ tkmij + M̂(1− ymij ) ∀(i, j) ∈ A,m ∈M,k ∈ K (7.41)

ŵkmij ≥ tkmij ∀(i, j) ∈ A,m ∈M,k ∈ K (7.42)

ŵkmij ≥ −M̂ymij ∀(i, j) ∈ A,m ∈M,k ∈ K (7.43)

ŵkmij ≤ 0 ∀(i, j) ∈ A,m ∈M,k ∈ K (7.44)

7.5 Numerical study

We use the Sioux Fall network from the literature (Bar-Gera, 2013) to show the benefits

of the proposed model. The Sioux Fall network consists of 24 nodes and 76 arcs. Each

arc is defined by a length (in km), however other necessary data was generated as follows:
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The network is divided into six population centers. The population density of Sioux Fall

is 814.4 inhabitants per square kilometer. The population distribution is shown with the

definition of the population centers in Figure 7.2. The influence of an arc on a population

center was set to 1 if the arc is inside the center, 0 if not. If an arc is contained in more

than one center, the influence was proportionally split into two parts (e.g. arc (11,14)).
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Figure 7.2: Sioux Fall network with population centers and population density

Two vehicle types are used with transportation costs of 1.1 per transported unit per

km for the smaller vehicle and 0.9 per km for the larger vehicle. The risk of an accident

of the larger vehicle was set 3% than the risk of the smaller one. The accident rate on

an arc was generated randomly between 9.56× 10−9 and 1.08× 10−7 (Erkut and Gzara,

2008) and σkmij is the product of the accident rate, the length of the arc and the factor

for the vehicle type. We assume only one commodity type. Consequently, the risk for
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all shipped commodities are the same.

Four different demand scenarios were generated randomly. Nodes 1, 2, 13, 20 were

defined as the enter and exit nodes of the network. 43 commodities were shipped through

the network (13 out-flows and 30 in-flows). The demand into the city (in-flows) was

generated randomly between 100 and 1,000 and out of the city (out-flows) between 50

and 150.

The model of the previous section was solved in Xpress on an Intel Core i7 with

8 threads and 32GB RAM. In the results, we used the risk measure abbreviations of

Section 7.3.2. For the non-linear function with l social bounds (NLl), we used a simple

penalty function, which is defined as follows: The risk interval was divided into l − 1

equidistant segments and from each point p, a further penalty of p2 was added to the

objective function.

In a first test, we evaluated the convergence of the model. Figure 7.3 shows that the

lower bound stays zero and therefore the GAP cannot be calculated. This is the case

for all measures that calculate the deviation: MdM, AdM, MdA, AdA. As mentioned

in the definition of the measures, all population centers have the same risk in an opti-

mal equilibration: zero. Most of the improvements happen within the first 20 minutes

Figure 7.3: Run time analysis for AdA

and there are still some improvements within two hours. Therefore, the time limit of

the numerical study was set to 7,200 seconds. For the other objective functions, the

convergence was better.

We first show the effect of risk equilibration and the differences between risk equili-

bration and total risk minimization and discuss possible approaches to combine them.

Then, we compare the effect of using different transportation modes in one model be-

fore discussing the difference between our model and the equilibration idea from the

literature.

90



7.5 Numerical study

7.5.1 Risk equilibration

Table 7.1 shows the results for the different objective functions for demand scenario 1

and the risk of all population centers is reported. The optimized objective function is

shown in the first column. Moreover, the optimized risk measure is highlighted in bold.

Objective Risk measures
function Trad Max AdM MdM AdA MdA

Trad 1.574 0.525 0.155 0.262 0.207 0.419
Max 2.144 0.370 0.018 0.055 0.023 0.067
AdM 2.680 0.488 0.014 0.041 0.024 0.063
MdM 2.251 0.441 0.042 0.066 0.065 0.128
AdA 3.194 0.541 0.004 0.012 0.007 0.020
MdA 2.482 0.444 0.028 0.042 0.040 0.072
NL7 1.696 0.413 0.070 0.136 0.119 0.266

(a) Risk measures

Objective Risk of population centers
function Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

Trad 0.525 0.179 0.464 0.105 0.169 0.132
Max 0.370 0.367 0.366 0.303 0.370 0.370
AdM 0.441 0.425 0.488 0.447 0.447 0.433
MdM 0.314 0.371 0.441 0.314 0.421 0.390
AdA 0.520 0.534 0.541 0.532 0.533 0.532
MdA 0.414 0.372 0.444 0.443 0.436 0.372
NL7 0.357 0.286 0.413 0.147 0.284 0.209

(b) Risk of population centers

Table 7.1: Risk evalutation for demand scenario 1

The results show that just minimizing the deviation or the maximum leads to an

extreme increase in the overall risk in the network. The results are quite obvious as

an equilibrium is only possible on a high level. It shows that, for an equal distribution

of risk, almost every population center comes out worse and the total risk increases

by more than 100%. Only the non-linear function, which does not try to equalize

all populations, distributes the risk better without a dramatic risk increase. As the

equilibration measures AdM, MdM, AdA, MdM perform very similar and the maximum

risk is only effective if there is no population center with a very high risk, we will use
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the AdA measure for the following analysis.

7.5.2 Trade-off between risk equilibration and risk minimization

Since the pure risk equilibration increases the total risk significantly, we analyze the

trade-off between minimizing the total risk in the network and equilibrating the risk by

applying two approaches: First, we use a classical biobjective function that combines the

AdA equilibration measure with the overall risk function Trad, which is weighted with

α ∈ {0.1, 0.2}. In a second approach, we minimize AdA and allow a maximum increase

of β ∈ {5, 10, 15, 20, 25, 30, 35} percent of the traditional risk by adding an auxiliary

constraint.

Table 7.2 shows the results of the first approach for the 4 randomly generated demand

scenarios (DSs). The minimal risk solutions are 1.574 (DS 1), 1.388 (DS 2), 1.399 (DS 3)

and 1.335 (DS 4). One can see that the risk is better distributed among the population

centers without increasing the risk as much as in the pure equilibration measures. Also,

a higher weight on the risk minimization (Trad) leads, as expected, to a lower risk with

worse equilibration. However, the results also show that it is difficult to find a good α

for the objective function. For example, in DS 3 , the traditional risk increases with

α = 0.2 to 1.762 and in DS 4 to 1.768. The increase in DS 3 is higher than in DS 4.

However, for α = 0.1 this fact is again reverted.

DS
Obj func Risk measure Risk of population centers

AdA + Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1
0.1 Trad 2.179 0.015 0.370 0.362 0.378 0.357 0.370 0.341
0.2 Trad 2.024 0.031 0.329 0.328 0.406 0.321 0.320 0.320

2
0.1 Trad 2.043 0.003 0.341 0.340 0.346 0.340 0.337 0.339
0.2 Trad 1.983 0.014 0.340 0.335 0.347 0.320 0.322 0.320

3
0.1 Trad 1.875 0.015 0.322 0.308 0.318 0.307 0.309 0.310
0.2 Trad 1.762 0.052 0.314 0.304 0.325 0.273 0.273 0.274

4
0.1 Trad 1.809 0.025 0.306 0.295 0.318 0.295 0.301 0.293
0.2 Trad 1.768 0.030 0.306 0.304 0.308 0.289 0.284 0.278

Table 7.2: Results for 4 demand scenarios using the biobjective risk function

Table 7.3 shows the results for the second approach with the same demand scenarios.

The distribution is already much better for an increase of 5 - 15% of the total risk.

However, to distribute the risk as fairly as possible, an increase of more than 35%
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DS β
Risk measure Risk of population centers
Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1

0 1.574 0.207 0.525 0.179 0.464 0.105 0.169 0.132
5 1.653 0.130 0.407 0.264 0.423 0.183 0.195 0.181

10 1.732 0.103 0.348 0.279 0.423 0.202 0.274 0.205
15 1.809 0.082 0.346 0.277 0.423 0.242 0.280 0.240
20 1.885 0.063 0.341 0.286 0.423 0.280 0.281 0.273
25 1.968 0.047 0.366 0.303 0.397 0.294 0.301 0.305
30 2.044 0.029 0.331 0.328 0.406 0.322 0.328 0.329
35 2.125 0.021 0.353 0.364 0.381 0.330 0.351 0.346

2

0 1.388 0.177 0.393 0.175 0.448 0.164 0.134 0.074
5 1.457 0.138 0.377 0.223 0.401 0.147 0.173 0.136

10 1.527 0.113 0.375 0.247 0.373 0.171 0.194 0.167
15 1.596 0.095 0.365 0.266 0.370 0.197 0.199 0.200
20 1.666 0.084 0.358 0.294 0.363 0.208 0.221 0.222
25 1.728 0.069 0.357 0.290 0.362 0.243 0.243 0.233
30 1.804 0.052 0.343 0.340 0.345 0.263 0.260 0.254
35 1.871 0.041 0.354 0.290 0.366 0.282 0.290 0.290

3

0 1.399 0.159 0.377 0.199 0.412 0.185 0.154 0.072
5 1.469 0.118 0.356 0.253 0.366 0.170 0.189 0.136

10 1.539 0.086 0.327 0.308 0.319 0.168 0.237 0.180
15 1.609 0.064 0.317 0.305 0.326 0.211 0.238 0.211
20 1.679 0.046 0.321 0.314 0.317 0.243 0.242 0.243
25 1.741 0.032 0.318 0.308 0.318 0.263 0.265 0.269
30 1.814 0.018 0.322 0.308 0.314 0.282 0.294 0.293
35 1.874 0.008 0.321 0.311 0.316 0.313 0.313 0.301

4

0 1.335 0.165 0.347 0.217 0.419 0.099 0.171 0.081
5 1.401 0.116 0.310 0.286 0.339 0.129 0.225 0.112

10 1.468 0.088 0.302 0.306 0.309 0.148 0.254 0.148
15 1.535 0.071 0.301 0.304 0.309 0.180 0.260 0.181
20 1.600 0.054 0.302 0.306 0.309 0.210 0.254 0.219
25 1.665 0.035 0.301 0.304 0.310 0.248 0.254 0.248
30 1.730 0.025 0.293 0.305 0.318 0.274 0.275 0.265
35 1.802 0.010 0.297 0.303 0.318 0.296 0.293 0.294

Table 7.3: Trade-off between Trad and AdA for 4 demand scenarios using the constrained
approach
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is necessary. Moreover, the equilibration of the first β steps is mainly achieved by a

significant reduction of the risk in the population centers with the highest risk and a

shift to low risk population centers. But especially in the last steps, the equilibration is

achieved by increasing the risk in low risk population centers without reducing the risk

in high risk population centers. For example in demand scenario 1, the risk of population

center 1 drops from 0.525 to 0.407 in the first step (β = 5%) and to 0.348 in the second

step (β = 10%). Population center 3 improves in the first step from 0.464 to 0.423.

Even though the equilibration improves further for β ≥ 15, this is mostly due to a risk

increase in population centers 2, 4, 5 and 6.
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Figure 7.4: Trade-off between Trad and AdA for 4 demand scenarios using the con-
strained approach

Figure 7.4 shows the pareto-optimal curves of the trade-off between an equilibrated

network and a network with a low total risk. The results indicate a convex dependency

between both objective functions, which is consistent with our previous findings: With

a small increase of total risk, the risk can be much better equilibrated. However, there

comes a point from which on the price of total risk in the network for further equilibration

is very high.

Besides these two approaches, the non-linear objective function of the previous section

showed similar effects and can be a good alternative, especially when risk is percieved dif-

ferently in different population centers. The biobjective function approach can achieve

the same pareto curves as the constrained approach. However, using the second ap-

proach, it is easier to control the increase of risk and decide between pareto-optimal
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decisions and besides, one does not have to find the weights of the objective function.

7.5.3 Comparison to one mode decision model

In this subsection, we investigate the impact of the multi-mode decision model compared

to classical single mode models. As in the multi-mode decision model, the mode is part

of the decision process. We take the mode decision of the multi-mode model and solve

the hazmat network design problem for mode 1 and 2 separately and add the results

up (sum). The multi-mode result is compared with the sum of the single mode models.

Moreover, the network design of the two single mode models is used in the multi-mode

model to see the reaction of the followers on the single mode decisions (reaction). For all

models, we used the non-linear objective function with 7 approximation points (NL7)

as the non-linear function combined risk equilibration and risk minimization in one

function. The detailed results are shown in Table 7.4.

DS Risk measure Risk of population centers
Model Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1
multi mode 1.696 0.119 0.357 0.286 0.413 0.147 0.284 0.209

sum 1.687 0.127 0.381 0.298 0.402 0.130 0.267 0.209
reaction 1.681 0.130 0.378 0.294 0.410 0.128 0.264 0.207

2
multi mode 1.524 0.118 0.356 0.288 0.365 0.147 0.211 0.157

sum 1.522 0.118 0.356 0.289 0.365 0.147 0.208 0.157
reaction 1.522 0.118 0.356 0.289 0.365 0.147 0.208 0.157

3
multi mode 1.538 0.089 0.326 0.293 0.329 0.208 0.239 0.142

sum 1.547 0.099 0.362 0.267 0.329 0.215 0.233 0.140
reaction 1.460 0.142 0.386 0.210 0.396 0.188 0.183 0.097

4
multi mode 1.419 0.110 0.303 0.286 0.336 0.143 0.240 0.112

sum 1.423 0.118 0.308 0.329 0.303 0.090 0.262 0.131
reaction 1.424 0.118 0.308 0.329 0.303 0.090 0.262 0.131

Table 7.4: Comparison of the multi-mode model with single-level decisions

In scenario 2, there is no difference between the three models. In the other three

scenarios, the distribution got worse. In scenario 1, the total risk is reduced by 5%,

but the equilibration is worse by 60%. Population centers 1 and 3, which are the ones

with the highest risk, increase their risk. This shift towards risk minimization is mostly

caused by the reaction of the followers if they are again allowed to change their mode.

In scenario 4, the single mode models result even in a higher total risk and a worse
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equilibration. This worse equilibration is due to the fact that two equilibrated modes

do not need to be equilibrated in the same way as when considering several modes.

7.5.4 Comparison to maximum arc risk equilibration

To equilibrate risk, the literature so far proposed to minimize the maximum arc risk

(Bianco et al., 2009). In Table 7.5, we compare the solution of a maximum arc risk

model to solutions of the pareto curve of the previous section for the four different

demand scenarios.

DS
Objective Risk measure Risk of population centers

function Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1
max arc 1.890 0.217 0.591 0.211 0.534 0.210 0.209 0.135
β = 20 1.885 0.063 0.341 0.286 0.423 0.280 0.281 0.273
β = 0 1.574 0.207 0.525 0.179 0.464 0.105 0.169 0.132

2
max arc 1.789 0.173 0.458 0.264 0.503 0.209 0.211 0.144
β = 30 1.804 0.052 0.343 0.340 0.345 0.263 0.260 0.254
β = 0 1.388 0.177 0.393 0.175 0.448 0.164 0.134 0.074

3
max arc 1.975 0.170 0.447 0.254 0.508 0.378 0.247 0.142
β = 35 1.874 0.008 0.321 0.311 0.316 0.313 0.313 0.301
β = 0 1.399 0.159 0.377 0.199 0.412 0.185 0.154 0.072

4

max arc 1.760 0.176 0.450 0.350 0.426 0.178 0.271 0.086
β = 30 1.730 0.025 0.293 0.305 0.318 0.274 0.275 0.265
β = 0 1.335 0.165 0.347 0.217 0.419 0.099 0.171 0.081

Table 7.5: Comparison to maximum arc risk model

The results show for all demand scenarios that there exists a solution with a similar

total risk in the network but a better distribution within the population centers and

a solution with a similar distribution within the population centers but significantly

smaller total risk. Using maximum arc risk increased the total risk by more than 35%

without distributing the risk better. In all scenarios, every population center has a higher

risk, than the risk minimal solution. However, compared to the equilibration measures

for population centers, this does not lead to a better distribution of risk. The risk

distribution remains more or less the same as in the minimal risk solution. Therefore, a

similar risk distribution is always possible with the minimal overall risk solution.
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7.6 Conclusions

We introduced a new population-based risk definition and extended the HTNDP to a

multi-mode problem in oder to address the problem of risk equity. In the numerical

study, we showed the superiority of the new definition over the arc risk definition and

the necessity to consider multiple modes in the model. We also showed that the pure

equilibration of risk increases the total risk significantly and that one has to find a trade-

off between equilibration and risk minimization. But because of the convex correlation

between these two measures, a small increase in the total risk can lead to a much better

equilibration. As the problem is still very difficult to solve, enhancements for solving

this problem should be considered in further research.

97





Chapter 8

Conclusion

8.1 Summary

We introduced a BD algorithm for solving DCLBP. The bilevel formulation is trans-

formed into a MILP using KKT conditions. In this MILP, the binary variables were

used as the complicating variables to decompose the problem into a master and a slave

problem for applying BD. The efficiency of the method was shown on four different prob-

lems: the DNDP (Chapter 3), the DDNDP (Chapter 4), the DCFSP (Chapter 5) and

the HTNDP (Chapter 6). Depending on the problem structure, different acceleration

methods were used in the BD.

Since the DNDP has non-linear travel time functions in the objective function, we

further proposed a linear approximation of these convex functions without introducing

binary auxiliary variables. Moreover, the slave problem was decomposed into two sub-

problems for a fast calculation of the dual variables for the BD. The numerical study

showed run time improvements of more than 60% over the MILP.

For computing maintenance schedules in traffic networks, we extended the DNDP to a

multi-period model. Because of the problem structure, the slave problem of the DDNDP

was decomposed within the periods and a multi-cut version of the BD was used. Even

though the BD did not reach convergence, the found solutions were better than a genetic

algorithm and simple priority rules, which currently might be used in practice. Further,

we showed that, especially with tight budgets, the BD is the only method among all

tested approaches that finds feasible solutions.

For the DCFSP and the HTNDP pareto-optimal cuts were generated to further im-

prove the convergence. The results showed run time improvements of more than 90%

compared to the MILP formulation for both problems. In the HTNDP, the multi-follower

structure was used to decompose the slave problem and apply again the multi-cut ver-
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sion of BD. Moreover, we pointed out that the bilevel formulation in the HTNDP is

necessary and single-level approaches can cause a higher risk for the population. The

results further underlined that, a good classification of dangerous goods, too, can reduce

the risk.

In the last chapter, the single mode risk minimization of the HTNDP was questioned.

On the one side, the model was extended to a multi-mode network design problem. On

the other side, a new population based risk definition was introduced to distribute the

risk fairly among the population. The numerical results showed that pure risk equili-

bration leads to a very high total risk in the network and every population center in

the network can end up with a higher risk. Therefore, a trade-off between risk mini-

mization and risk equilibration is necessary and the authorities need to decide between

pareto-optimal solutions. A convex correlation between these two objectives showed

that the risk can be significantly better distributed by very slightly incrasing the total

risk. Moreover, multiple modes need to be considered and risk equilibration over arcs,

as it is done in the literature so far, does not distribute the risk among the population

fairly.

8.2 Limitations and future research

The proposed BD algorithm was only tested for network design problems and a bilevel

facility selection problem. But bilevel programming has a wide range of applications.

Testing the algorithm on other bilevel problems with different structures might pro-

vide further insights into limitations and advantages of the BD. The used problems are

special cases of bilevel problems with binary leader decision variables. Adapting the

algorithm to integer or even continuous leader decision variables, could further extend

the applicability of the method.

So far, we only used constraints which depend on the leader decision variables in the

leader problem. If leader constraints depend on leader and follower decision variables,

the KKT transformation is no longer valid. In this case, the leader also has to anticipate

whether or not the follower decision is valid with respect to these so-called coupling

constraints. Therefore, extending the approach in this direction would be interesting for

future research, as well.

Especially the cmHTNDP showed that further enhancements of the solution method

are necessary since realistic networks can be very large. This can be done, for example,

by applying the BD to this problem or developing efficient heuristics.
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