Skip to main content

Chromatyping: Reconstructing Nucleosome Profiles from NOMe Sequencing Data

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2018)

Abstract

Measuring nucleosome positioning in cells is crucial for the analysis of epigenetic gene regulation. Reconstruction of nucleosome profiles of individual cells or subpopulations of cells remains challenging because most genome-wide assays measure nucleosome positioning and DNA accessibility for thousands of cells using bulk sequencing. Here we use characteristics of the NOMe-sequencing assay to derive a new approach, called ChromaClique, for deconvolution of different nucleosome profiles (chromatypes) from cell subpopulations of one NOMe-seq measurement. ChromaClique uses a maximal clique enumeration algorithm on a newly defined NOMe read graph that is able to group reads according to their nucleosome profiles. We show that the edge probabilities of that graph can be efficiently computed using Hidden Markov Models. We demonstrate using simulated data that ChromaClique is more accurate than a related method and scales favorably, allowing genome-wide analyses of chromatypes in cell subpopulations. Software is available at https://github.com/shounak1990/ChromaClique under MIT license.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thurman, R.E., et al.: The accessible chromatin landscape of the human genome. Nature 489(7414), 75–82 (2012)

    Article  Google Scholar 

  2. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J.: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10(12), 1213–1218 (2013)

    Article  Google Scholar 

  3. Kelly, T.K., Liu, Y., Lay, F.D., Liang, G., Berman, B.P., Jones, P.A.: Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22(12), 2497–2506 (2012)

    Article  Google Scholar 

  4. Taberlay, P.C., Statham, A.L., Kelly, T.K., Clark, S.J., Jones, P.A.: Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res. 24(9), 1421–1432 (2014)

    Article  Google Scholar 

  5. Durek, P., et al.: Epigenomic profiling of human CD4\(^{+}\) T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity 45(5), 1148–1161 (2016)

    Article  Google Scholar 

  6. Guo, H., et al.: DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Res. 27(2), 165–183 (2017)

    Article  Google Scholar 

  7. Schmidt, F., et al.: Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction. Nucleic Acids Res. 45(1), 54–66 (2017)

    Article  Google Scholar 

  8. Pott, S.: Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 6, e23203 (2017)

    Article  Google Scholar 

  9. Vincent, M., et al.: epiG: statistical inference and profiling of DNA methylation from whole-genome bisulfite sequencing data. Genome Biol. 18(1), 38 (2017)

    Article  Google Scholar 

  10. Domingo, E., Sheldon, J., Perales, C.: Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76(2), 159–216 (2012)

    Article  Google Scholar 

  11. Beerenwinkel, N., Günthard, H.F., Roth, V., Metzner, K.J.: Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front. Microbiol. 3, 329 (2012)

    Article  Google Scholar 

  12. Posada-Cespedes, S., Seifert, D., Beerenwinkel, N.: Recent advances in inferring viral diversity from high-throughput sequencing data. Virus Res. 239, 17–32 (2017)

    Article  Google Scholar 

  13. Töpfer, A., Marschall, T., Bull, R.A., Luciani, F., Schönhuth, A., Beerenwinkel, N.: Viral quasispecies assembly via maximal clique enumeration. PLoS Comput. Biol. 10(3), e1003515 (2014)

    Article  Google Scholar 

  14. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  15. Huang, W., Li, L., Myers, J.R., Marth, G.T.: ART: a next-generation sequencing read simulator. Bioinformatics 28(4), 593–594 (2012)

    Article  Google Scholar 

  16. Krueger, F., Andrews, S.R.: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27(11), 1571–1572 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Karl Nordström, Gilles Gasparoni and Jörn Walter for providing access to the HepG2 NOMe-seq data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Marschall or Marcel H. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Canzar, S., Marschall, T., Schulz, M.H. (2018). Chromatyping: Reconstructing Nucleosome Profiles from NOMe Sequencing Data. In: Raphael, B. (eds) Research in Computational Molecular Biology. RECOMB 2018. Lecture Notes in Computer Science(), vol 10812. Springer, Cham. https://doi.org/10.1007/978-3-319-89929-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89929-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89928-2

  • Online ISBN: 978-3-319-89929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics