Abstract
In hospital environments, treatment processes, resp. clinical pathways, are adopted based on the health state of a patient. Modeling of pathways is time consuming and due to the involvement of many participants, the introduction of clinical pathways is cost-intensive. Process mining offers a possibility for automatic or semi-automatic creation of clinical pathways based on the event log data recorded during the process execution in hospital information systems. However, state-of-the-art algorithms struggle to discover meaningful end-to-end patterns from highly flexible clinical log data. This challenge can be addressed by Local Process Models. They allow pathways to be modeled partially, thus enabling the detection of major process steps. In our case study, we apply this recently proposed method on a real world clinical dataset and discuss results and challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering, pp. 3–14. IEEE (1995)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)
Delias, P., Doumpos, M., Grigoroudis, E., Manolitzas, P., Matsatsinis, N.: Supporting healthcare management decisions via robust clustering of event logs. Knowl.-Based Syst. 84, 203–213 (2015)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_24
Herzberg, N., Kirchner, K., Weske, M.: Modeling and monitoring variability in hospital treatments: a scenario using CMMN. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_1
Homayounfar, P.: Process mining challenges in hospital information systems. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1135–1140. IEEE (2012)
Kirchner, K., Marković, P., Delias, P.: Challenges in automatic creation of clinical pathways: a case study. In: Proceeding of XV International Symposium SYMORG 2016, pp. 188–194 (2016)
Laue, R., Kirchner, K.: Using patterns for communicating about flexible processes. In: Conference on Business Process Modeling, Development, and Support (BPMDS), pp. 12–19. CEUR (2017)
Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs. In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp. 1–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27243-6_1
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
Mannhardt, F.: Sepsis cases - event log. Eindhoven University of Technology (2016). https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8
Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction and local process models. In: Proceedings of the Business Process Modeling, Development, and Support Working Conference 2017 (BPMDS) (2017)
Mans, R., Reijers, H., van Genuchten, M., Wismeijer, D.: Mining processes in dentistry. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 379–388. ACM (2012)
Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)
Rotter, T., Kinsman, L., James, E., Machotta, A., Willis, J., Snow, P., Kugler, J.: The effects of clinical pathways on professional practice, patient outcomes, length of stay, and hospital costs: Cochrane systematic review and meta-analysis. Eval. Health Prof. 35(1), 3–27 (2012)
Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8_11
Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for efficient local process model mining. In: Proceedings of the 7th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA 2017), pp. 8–22 (2017)
Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction for process mining using supervised learning techniques. In: SAI Intelligent Systems Conference 2016, pp. 1–10. IEEE (2016)
Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)
Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches for generating local process models through log projections. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)
Verbeek, H.M.W., Buijs, J.C.A.M., Van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: the process mining toolkit. In: Proceedings of the BPM Demonstration Track, vol. 615, pp. 34–39 (2010)
Weijters, A.J.M.M., van der Aalst, W.M.P., De Medeiros, A.K.A.: Process mining with the heuristics miner-algorithm. Technical Report WP, Technische Universiteit Eindhoven, vol. 166, pp. 1–34 (2006)
Acknowledgment
The authors kindly thank Niek Tax, Ph.D. candidate at TU Eindhoven, the author of the LPM methodology, for his valuable help and advice on installing and running the novel LPM mining ProM nightly build plug-in, which was crucial for conducting the experimental part of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Kirchner, K., Marković, P. (2018). Unveiling Hidden Patterns in Flexible Medical Treatment Processes – A Process Mining Case Study. In: Dargam, F., Delias, P., Linden, I., Mareschal, B. (eds) Decision Support Systems VIII: Sustainable Data-Driven and Evidence-Based Decision Support. ICDSST 2018. Lecture Notes in Business Information Processing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-90315-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-90315-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90314-9
Online ISBN: 978-3-319-90315-6
eBook Packages: Computer ScienceComputer Science (R0)