Skip to main content

Transparency in Fair Machine Learning: the Case of Explainable Recommender Systems

  • Chapter
  • First Online:
Human and Machine Learning

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Machine Learning (ML) models are increasingly being used in many sectors, ranging from health and education to justice and criminal investigation. Therefore, building a fair and transparent model which conveys the reasoning behind its predictions is of great importance. This chapter discusses the role of explanation mechanisms in building fair machine learning models and explainable ML technique. We focus on the special case of recommender systems because they are a prominent example of a ML model that interacts directly with humans. This is in contrast to many other traditional decision making systems that interact with experts (e.g. in the health-care domain). In addition, we discuss the main sources of bias that can lead to biased and unfair models. We then review the taxonomy of explanation styles for recommender systems and review models that can provide explanations for their recommendations. We conclude by reviewing evaluation metrics for assessing the power of explainability in recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollahi, B., Nasraoui, O.: Explainable Matrix Factorization for Collaborative Filtering. In: Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee (2016)

    Google Scholar 

  2. Abdollahi, B., Nasraoui, O.: Explainable Restricted Boltzmann Machines for Collaborative Filtering (2016). arXiv preprint arXiv:1606.07129

  3. Abdollahi, B., Nasraoui, O.: Using Explainability for Constrained Matrix Factorization. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 79–83. ACM (2017)

    Google Scholar 

  4. Antunes, P., Herskovic, V., Ochoa, S.F., Pino, J.A.: Structuring dimensions for collaborative systems evaluation. ACM Comput. Surv. (CSUR) 44(2), 8 (2012)

    Article  Google Scholar 

  5. Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: Intrigue: personalized recommendation of tourist attractions for desktop and hand held devices. Appl. Artif. Intell. 17(8–9), 687–714 (2003)

    Article  Google Scholar 

  6. Baeza-Yates, R.: Data and algorithmic bias in the web. In: Proceedings of the 8th ACM Conference on Web Science, pp. 1–1. ACM (2016)

    Google Scholar 

  7. Beede, D.N., Julian, T.A., Langdon, D., McKittrick, G., Khan, B., Doms, M.E.: Women in STEM: A Gender Gap to Innovation (2011)

    Google Scholar 

  8. Bilgic, M., Mooney, R.J.: Explaining recommendations: satisfaction versus promotion. In: Beyond Personalization Workshop, IUI, vol. 5, 153 p. (2005)

    Google Scholar 

  9. Billsus, D., Pazzani, M. J.: A personal news agent that talks, learns and explains. In: Proceedings of the Third Annual Conference on Autonomous Agents, pp. 268–275. ACM (1999)

    Google Scholar 

  10. Brown, B., Aaron, M.: The politics of nature. In: Smith, J. (ed.) The Rise of Modern Genomics, 3rd edn. Wiley, New York (2001)

    Google Scholar 

  11. Broy, M.: Software engineering – from auxiliary to key technologies. In: Broy, M., Dener, E. (eds.). Software Pioneers, pp. 10–13. Springer, Berlin (2002)

    Chapter  Google Scholar 

  12. Calfee, R.C., Valencia, R.R.: APA guide to preparing manuscripts for journal publication. American Psychological Association, Washington, DC (1991)

    Google Scholar 

  13. Cameron, D.: Feminism and Linguistic Theory. St. Martin’s Press, New York (1985)

    Chapter  Google Scholar 

  14. Cameron, D.: Theoretical debates in feminist linguistics: questions of sex and gender. In: Wodak, R. (ed.) Gender and Discourse, pp. 99–119. Sage Publications, London (1997)

    Google Scholar 

  15. Dascalu, M.I., Bodea, C.N., Mihailescu, M.N., Tanase, E.A., Ordoez de Pablos, P.: Educational recommender systems and their application in lifelong learning. Behav. Inf. Technol. 35(4), 290–297 (2016)

    Article  Google Scholar 

  16. Dod, J.: Effective substances. In: The Dictionary of Substances and Their Effects. Royal Society of Chemistry (1999) Available via DIALOG. http://www.rsc.org/dose/titleofsubordinatedocument. Cited 15 Jan 1999

  17. Dod, J.: Effective substances. In: The dictionary of substances and their effects. Royal Society of Chemistry (1999). Available via DIALOG. http://www.rsc.org/dose/Effectivesubstances. Cited 15 Jan 1999

  18. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning (2017)

    Google Scholar 

  19. Dwork, C.: What’s Fair?. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1–1. ACM (2017)

    Google Scholar 

  20. Fish, B., Kun, J., Lelkes, D.: A confidence-based approach for balancing fairness and accuracy. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 144–152. Society for Industrial and Applied Mathematics (2016)

    Google Scholar 

  21. Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Explor. Newsl. 15(1), 1–10 (2014)

    Article  Google Scholar 

  22. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992)

    Book  Google Scholar 

  23. Griffith, A.L.: Persistence of women and minorities in STEM field majors: is it the school that matters? Econ. Educ. Rev. 29(6), 911–922 (2010)

    Article  Google Scholar 

  24. Hajian, S., Bonchi, F., Castillo, C.: Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2125–2126. ACM (2016)

    Google Scholar 

  25. Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura. Appl. 169, 321–354 (1995)

    Article  MathSciNet  Google Scholar 

  26. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems, pp. 3315–3323 (2016)

    Google Scholar 

  27. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)

    Google Scholar 

  28. Harris, M., Karper, E., Stacks, G., Hoffman, D., DeNiro, R., Cruz, P., et al.: Writing labs and the Hollywood connection. J Film Writing 44(3), 213–245 (2001)

    Google Scholar 

  29. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM (2000)

    Google Scholar 

  30. Ibach, H., Lüth, H.: Solid-State Physics, 2nd edn, pp. 45–56. Springer, New York (1996)

    Book  Google Scholar 

  31. John, Alber, O’Connell, Daniel C., Kowal, Sabine: Personal perspective in TV interviews. Pragmatics 12, 257–271 (2002)

    Article  Google Scholar 

  32. Kamiran, F., Calders, T.: Classifying without discriminating. In: 2nd International Conference on Computer, Control and Communication, 2009. IC4 2009, pp. 1-6). IEEE, New York (2009)

    Google Scholar 

  33. Kamishima T., Akaho, S., Sakuma, J.: Fairness-aware learning through regularization approach. In: 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 643–650. IEEE, New York (2011)

    Google Scholar 

  34. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores (2016). arXiv preprint arXiv:1609.05807

  35. Kreger, M., Brindis, C.D., Manuel, D.M., Sassoubre, L. (2007). Lessons learned in systems change initiatives: benchmarks and indicators. Am. J. Commun. Psychol. https://doi.org/10.1007/s10464-007-9108-14

  36. Lipton, Z.C.: The Mythos of Model Interpretability (2016). arXiv preprint arXiv:1606.03490

  37. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Thinking positively-explanatory feedback for conversational recommender systems. In: Proceedings of the European Conference on Case-Based Reasoning (ECCBR-04) Explanation Workshop, pp. 115–124 (2004)

    Google Scholar 

  38. O’Neil, J.M., Egan, J.: Men’s and women’s gender role journeys: metaphor for healing, transition, and transformation. In: Wainrig, B.R. (ed.) Gender Issues Across the Life Cycle, pp. 107–123. Springer, New York (1992)

    Google Scholar 

  39. Pohl, R. (ed.).: Cognitive Illusions: A Handbook on Fallacies and Biases in Thinking, Judgement and Memory. Psychology Press (2004)

    Google Scholar 

  40. S. Preuss, A. Demchuk Jr., M. Stuke, Appl. Phys. A 61 (1995)

    Article  Google Scholar 

  41. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 157–164. ACM, Chicago (2011)

    Google Scholar 

  42. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144. ACM (2016)

    Google Scholar 

  43. Sapiezynski, P., Kassarnig, V., Wilson, C.: Academic performance prediction in a gender-imbalanced environment (2017)

    Google Scholar 

  44. Sharma, A., Cosley, D.: Do social explanations work?: studying and modeling the effects of social explanations in recommender systems. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1133–1144. ACM (2013)

    Google Scholar 

  45. Slifka, M.K., Whitton, J.L.: Clinical implications of dysregulated cytokine production. J. Mol. Med. (2000). https://doi.org/10.1007/s001090000086

  46. Slifka, M.K., Whitton, J.L.: Clinical implications of dysregulated cytokine production. J. Mol. Med. (2000). https://doi.org/10.1007/s001090000086

  47. M.K. Slifka, J.L. Whitton, J. Mol. Med. https://doi.org/10.1007/s001090000086

  48. S.E. Smith, in Neuromuscular Junction, ed. by E. Zaimis. Handbook of Experimental Pharmacology, vol 42 (Springer, Heidelberg, 1976), p. 593

    Google Scholar 

  49. Smith, E.: Women into science and engineering? gendered participation in higher education STEM subjects. Br. Educ. Res. J. 37(6), 993–1014 (2011)

    Article  Google Scholar 

  50. Smith, J., Jones Jr., M., Houghton, L., et al.: Future of health insurance. N. Eng. J. Med. 965, 325–329 (1999)

    Google Scholar 

  51. South, J., Blass, B.: The Future of Modern Genomics. Blackwell, London (2001)

    Google Scholar 

  52. Suleiman, C., O’Connell, D.C., Kowal, S.: If you and I, if we, in this later day, lose that sacred fire...’: Perspective in political interviews. J. Psycholinguist. Res. (2002). https://doi.org/10.1023/A:1015592129296

  53. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Justified recommendations based on content and rating data. In: WebKDD Workshop on Web Mining and Web Usage Analysis (2008)

    Google Scholar 

  54. Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., Schmidt-Thieme, L.: Recommender system for predicting student performance. Procedia Comput. Sci. 1(2), 2811–2819 (2010)

    Article  Google Scholar 

  55. Tintarev, N., Masthoff, J.: Designing and evaluating explanations for recommender systems. In: Recommender Systems Handbook, pp. 479–510 (2011)

    Google Scholar 

  56. Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. User Model. User-Adap. Inter. 22(4), 399–439 (2012)

    Article  Google Scholar 

  57. Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 47–56. ACM (2009)

    Google Scholar 

  58. Yao, S., Huang, B.: New Fairness Metrics for Recommendation that Embrace Differences (2017). arXiv preprint arXiv:1706.09838

  59. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 83–92. ACM (2014)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by KSEF Award KSEF-3113-RDE-017 and NSF Grant NSF IIS-1549981.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Nasraoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdollahi, B., Nasraoui, O. (2018). Transparency in Fair Machine Learning: the Case of Explainable Recommender Systems. In: Zhou, J., Chen, F. (eds) Human and Machine Learning. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-90403-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90403-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90402-3

  • Online ISBN: 978-3-319-90403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics