Abstract
In this paper, we study the problem of finding a maximum colorful cycle a vertex-colored graph. Specifically, given a graph with colored vertices, the goal is to find a cycle containing the maximum number of colors. We aim to give a dichotomy overview on the complexity of the problem. We first show that the problem is NP-hard even for simple graphs such as split graphs, biconnected graphs, interval graphs. Then we provide polynomial-time algorithms for classes of vertex-colored threshold graphs and vertex-colored bipartite chain graphs, which are our main contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akbari, S., Liaghat, V., Nikzad, A.: Colorful paths in vertex coloring of graphs. Electron. J. Comb. 18(1), P17 (2011)
Akiyama, T., Nishizeki, T., Saito, N.: Np-completeness of the hamiltonian cycle problem for bipartite graphs. J. Inf. Proc. 3(2), 73–76 (1979)
Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inf. Proc. Lett. 17(2), 97–101 (1983)
Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-based approaches for partitioning into colorful components. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 176–187. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8_17
Cohen, J., Manoussakis, Y., Pham, H., Tuza, Z.: Tropical matchings in vertex-colored graphs. In: Latin and American Algorithms, Graphs and Optimization Symposium (2017)
Cohen, J., Italiano, G.F., Manoussakis, Y., Nguyen, K.T., Pham, H.P.: Tropical paths in vertex-colored graphs. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 291–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_20
Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)
Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)
Foucaud, F., Harutyunyan, A., Hell, P., Legay, S., Manoussakis, Y., Naserasr, R.: Tropical homomorphisms in vertex-coloured graphs. Discrete App. Math. (to appear)
Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings 6th Symposium on Theory of Computing, pp. 47–63 (1974)
Ibarra, L.: A simple algorithm to find Hamiltonian cycles in proper interval graphs. Inf. Proc. Lett. 109(18), 1105–1108 (2009b)
Li, H.: A generalization of the Gallai-Roy theorem. Graphs Comb. 17(4), 681–685 (2001)
Lin, C.: Simple proofs of results on paths representing all colors in proper vertex-colorings. Graphs Comb. 23(2), 201–203 (2007)
Mahadev, N.V.R., Peled, U.N.: Longest cycles in threshold graphs. Discrete Math. 135(1–3), 169–176 (1994)
Marx, D.: Graph colouring problems and their applications in scheduling. Periodica Polytech. Electr. Eng. 48(1–2), 11–16 (2004)
Micali, S., Vazirani, V.V.: An \({O}(\sqrt{|V|} |{E}|)\) algorithm for finding maximum matching in general graphs. In: Proceedings 21st Symposium on Foundations of Computer Science, pp. 17–27 (1980)
Uehara, R., Valiente, G.: Linear structure of bipartite permutation graphs and the longest path problem. Inf. Proc. Lett. 103(2), 71–77 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Italiano, G.F., Manoussakis, Y., Kim Thang, N., Pham, H.P. (2018). Maximum Colorful Cycles in Vertex-Colored Graphs. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-90530-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90529-7
Online ISBN: 978-3-319-90530-3
eBook Packages: Computer ScienceComputer Science (R0)