Skip to main content

Maximum Colorful Cycles in Vertex-Colored Graphs

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

Abstract

In this paper, we study the problem of finding a maximum colorful cycle a vertex-colored graph. Specifically, given a graph with colored vertices, the goal is to find a cycle containing the maximum number of colors. We aim to give a dichotomy overview on the complexity of the problem. We first show that the problem is NP-hard even for simple graphs such as split graphs, biconnected graphs, interval graphs. Then we provide polynomial-time algorithms for classes of vertex-colored threshold graphs and vertex-colored bipartite chain graphs, which are our main contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbari, S., Liaghat, V., Nikzad, A.: Colorful paths in vertex coloring of graphs. Electron. J. Comb. 18(1), P17 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Akiyama, T., Nishizeki, T., Saito, N.: Np-completeness of the hamiltonian cycle problem for bipartite graphs. J. Inf. Proc. 3(2), 73–76 (1979)

    MathSciNet  MATH  Google Scholar 

  3. Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inf. Proc. Lett. 17(2), 97–101 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-based approaches for partitioning into colorful components. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 176–187. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8_17

    Chapter  Google Scholar 

  5. Cohen, J., Manoussakis, Y., Pham, H., Tuza, Z.: Tropical matchings in vertex-colored graphs. In: Latin and American Algorithms, Graphs and Optimization Symposium (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, J., Italiano, G.F., Manoussakis, Y., Nguyen, K.T., Pham, H.P.: Tropical paths in vertex-colored graphs. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 291–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_20

    Chapter  Google Scholar 

  7. Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)

    Article  Google Scholar 

  8. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Foucaud, F., Harutyunyan, A., Hell, P., Legay, S., Manoussakis, Y., Naserasr, R.: Tropical homomorphisms in vertex-coloured graphs. Discrete App. Math. (to appear)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings 6th Symposium on Theory of Computing, pp. 47–63 (1974)

    Google Scholar 

  11. Ibarra, L.: A simple algorithm to find Hamiltonian cycles in proper interval graphs. Inf. Proc. Lett. 109(18), 1105–1108 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, H.: A generalization of the Gallai-Roy theorem. Graphs Comb. 17(4), 681–685 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, C.: Simple proofs of results on paths representing all colors in proper vertex-colorings. Graphs Comb. 23(2), 201–203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mahadev, N.V.R., Peled, U.N.: Longest cycles in threshold graphs. Discrete Math. 135(1–3), 169–176 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica Polytech. Electr. Eng. 48(1–2), 11–16 (2004)

    Google Scholar 

  16. Micali, S., Vazirani, V.V.: An \({O}(\sqrt{|V|} |{E}|)\) algorithm for finding maximum matching in general graphs. In: Proceedings 21st Symposium on Foundations of Computer Science, pp. 17–27 (1980)

    Google Scholar 

  17. Uehara, R., Valiente, G.: Linear structure of bipartite permutation graphs and the longest path problem. Inf. Proc. Lett. 103(2), 71–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Phong Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Italiano, G.F., Manoussakis, Y., Kim Thang, N., Pham, H.P. (2018). Maximum Colorful Cycles in Vertex-Colored Graphs. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics