Abstract
We introduce forest straight-line programs (FSLPs) as a compressed representation of unranked ordered node-labelled trees. FSLPs are based on the operations of forest algebra and generalize tree straight-line programs. We compare the succinctness of FSLPs with two other compression schemes for unranked trees: top dags and tree straight-line programs of first-child/next sibling encodings. Efficient translations between these formalisms are provided. Finally, we show that equality of unranked trees in the setting where certain symbols are associative or commutative can be tested in polynomial time. This generalizes previous results for testing isomorphism of compressed unordered ranked trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for unordered data trees. Theor. Comput. Syst. 57(4), 927–966 (2015)
Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees. Inf. Comput. 243, 166–177 (2015)
Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Logics for unordered trees with data constraints on siblings. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 175–187. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_13
Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Proceedings of Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], Texts in Logic and Games, vol. 2, pp. 107–132. Amsterdam University Press (2008)
Boneva, I., Ciucanu, R., Staworko, S.: Schemas for unordered XML on a DIME. Theory Comput. Syst. 57(2), 337–376 (2015)
Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document trees. Inf. Syst. 33(4–5), 456–474 (2008)
Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata (2007)
Creus, C., Gascón, A., Godoy, G.: One-context unification with STG-compressed terms is in NP. In: Proceedings of RTA 2012, LIPIcs 15, pp. 149–164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)
Dudek, B., Gawrychowski, P.: Slowing down top trees for better worst-case bounds (2018). https://arxiv.org/abs/1801.01059
Gascón, A., Godoy, G., Schmidt-Schauß, M.: Unification and matching on compressed terms. ACM Trans. Comput. Logic 12(4), 26:1–26:37 (2011)
Gascón, A., Lohrey, M., Maneth, S., Reh, P., Sieber, K.: Grammar-based compression of unranked trees (2018). https://arxiv.org/abs/1802.05490
Hübschle-Schneider, L., Raman, R.: Tree compression with top trees revisited. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 15–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20086-6_2
Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_21
Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4(2), 241–299 (2012)
Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using RePair. Inf. Syst. 38(8), 1150–1167 (2013)
Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 337–349. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_27
Lohrey, M., Maneth, S., Reh, C.P.: Compression of unordered XML trees. In: Proceedings of ICDT 2017, LIPIcs 68, pp. 18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)
Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata evaluation for grammar-compressed trees. J. Comput. Syst. Sci. 78(5), 1651–1669 (2012)
Lohrey, M., Reh, P., Sieber, K.: Optimal top dag construction (2017). https://arxiv.org/abs/1712.05822
Sundaram, S., Madria, S.K.: A change detection system for unordered XML data using a relational model. Data Knowl. Eng. 72, 257–284 (2012)
Acknowledgements
The first author was supported by the EPSRC grant EP/N510129/1 at the Alan Turing Institute and the EPSRC grant EP/J017728/2 at University of Edinburgh. The second author was supported by the DFG research project LO748/10-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gascón, A., Lohrey, M., Maneth, S., Reh, C.P., Sieber, K. (2018). Grammar-Based Compression of Unranked Trees. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-90530-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90529-7
Online ISBN: 978-3-319-90530-3
eBook Packages: Computer ScienceComputer Science (R0)