Skip to main content

Grammar-Based Compression of Unranked Trees

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

Abstract

We introduce forest straight-line programs (FSLPs) as a compressed representation of unranked ordered node-labelled trees. FSLPs are based on the operations of forest algebra and generalize tree straight-line programs. We compare the succinctness of FSLPs with two other compression schemes for unranked trees: top dags and tree straight-line programs of first-child/next sibling encodings. Efficient translations between these formalisms are provided. Finally, we show that equality of unranked trees in the setting where certain symbols are associative or commutative can be tested in polynomial time. This generalizes previous results for testing isomorphism of compressed unordered ranked trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for unordered data trees. Theor. Comput. Syst. 57(4), 927–966 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees. Inf. Comput. 243, 166–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Logics for unordered trees with data constraints on siblings. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 175–187. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_13

    Chapter  MATH  Google Scholar 

  4. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Proceedings of Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], Texts in Logic and Games, vol. 2, pp. 107–132. Amsterdam University Press (2008)

    Google Scholar 

  5. Boneva, I., Ciucanu, R., Staworko, S.: Schemas for unordered XML on a DIME. Theory Comput. Syst. 57(2), 337–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document trees. Inf. Syst. 33(4–5), 456–474 (2008)

    Article  MATH  Google Scholar 

  7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata (2007)

  8. Creus, C., Gascón, A., Godoy, G.: One-context unification with STG-compressed terms is in NP. In: Proceedings of RTA 2012, LIPIcs 15, pp. 149–164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

    Google Scholar 

  9. Dudek, B., Gawrychowski, P.: Slowing down top trees for better worst-case bounds (2018). https://arxiv.org/abs/1801.01059

  10. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Unification and matching on compressed terms. ACM Trans. Comput. Logic 12(4), 26:1–26:37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gascón, A., Lohrey, M., Maneth, S., Reh, P., Sieber, K.: Grammar-based compression of unranked trees (2018). https://arxiv.org/abs/1802.05490

    Chapter  Google Scholar 

  12. Hübschle-Schneider, L., Raman, R.: Tree compression with top trees revisited. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 15–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20086-6_2

    Chapter  Google Scholar 

  13. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_21

    Chapter  Google Scholar 

  14. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4(2), 241–299 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using RePair. Inf. Syst. 38(8), 1150–1167 (2013)

    Article  Google Scholar 

  16. Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 337–349. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_27

    Chapter  Google Scholar 

  17. Lohrey, M., Maneth, S., Reh, C.P.: Compression of unordered XML trees. In: Proceedings of ICDT 2017, LIPIcs 68, pp. 18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  18. Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata evaluation for grammar-compressed trees. J. Comput. Syst. Sci. 78(5), 1651–1669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lohrey, M., Reh, P., Sieber, K.: Optimal top dag construction (2017). https://arxiv.org/abs/1712.05822

  20. Sundaram, S., Madria, S.K.: A change detection system for unordered XML data using a relational model. Data Knowl. Eng. 72, 257–284 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The first author was supported by the EPSRC grant EP/N510129/1 at the Alan Turing Institute and the EPSRC grant EP/J017728/2 at University of Edinburgh. The second author was supported by the DFG research project LO748/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Philipp Reh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gascón, A., Lohrey, M., Maneth, S., Reh, C.P., Sieber, K. (2018). Grammar-Based Compression of Unranked Trees. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics