Skip to main content

Structural Parameterizations of Dominating Set Variants

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Abstract

We consider structural parameterizations of the fundamental dominating set problem and its variants in the parameter ecology program. We give improved fixed-parameter tractable (FPT) algorithms and lower bounds under well-known conjectures for dominating set in graphs that are k vertices away from a cluster graph or a split graph. These are graphs in which there is a set of k vertices (called the modulator) whose deletion results in a cluster graph or a split graph. We also call k as the deletion distance (to the appropriate class of graphs). Specifically, we show the following results. When parameterized by the deletion distance k to cluster graphs,

  • we can find a minimum dominating set in \({\mathcal O}^*(3^k)\) time (\({\mathcal O}^*\) notation ignores polynomial factors of input). Within the same time, we can also find a minimum independent dominating set (IDS) or a minimum efficient dominating set (EDS) or a minimum total dominating set. These algorithms are obtained through a dynamic programming approach for an interesting generalization of set cover which may be of independent interest.

  • We complement our upper bound results by showing that at least for dominating set and total dominating set, \({\mathcal O}^*((2-\epsilon )^k)\) time algorithm is not possible for any \(\epsilon > 0\) under, what is known as, Set Cover Conjecture. We also show that most of these variants of dominating set do not have polynomial sized kernel.

The standard dominating set and most of its variants are \(\mathsf {NP}\)-hard or \(\mathsf {W}\)[2]-hard in split graphs. For the two variants IDS and EDS that are polynomial time solvable in split graphs, we show that when parameterized by the deletion distance k to split graphs,

  • IDS can be solved in \({\mathcal O}^*(2^k)\) time and we provide an \(\Omega (2^k)\) lower bound under the strong exponential time hypothesis (SETH);

  • the \(2^k\) barrier can be broken for EDS by designing an \({\mathcal O}^*( 3^{k/2})\) algorithm. This is one of the very few problems with a runtime better than \({\mathcal O}^*(2^k)\) in the realm of structural parameterization. We also show that no \(2^{o(k)}\) algorithm is possible unless the exponential time hypothesis (ETH) is false.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Due to lack of space, the proofs of Theorems, Lemmas, Observations, Safeness of Reduction Rules marked \(\star \) and some omitted details will appear in the full version.

  2. 2.

    Note that the SETH based lower bound result and the result ruling out the existence of polynomial kernel in this paper use different constructions.

  3. 3.

    We provide an alternate proof in the full version.

References

  1. Bergougnoux, B., Kanté, M.M.: Fast exact algorithms for some connectivity problems parametrized by clique-width. arXiv preprint arXiv:1707.03584 (2017)

  2. Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster algorithms on branch and clique decompositions. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_17

    Chapter  Google Scholar 

  3. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms (TALG) 12(3), 41 (2016)

    MathSciNet  Google Scholar 

  8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5–6), 179–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms (TALG) 11(2), 13 (2014)

    MathSciNet  Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haynes, T.W., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1997)

    MATH  Google Scholar 

  16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

    Article  MathSciNet  Google Scholar 

  19. Oum, S.-I., Sæther, S.H, Vatshelle, M.: Faster algorithms parameterized by clique-width. arXiv preprint arXiv:1311.0224 (2013)

  20. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zehavi, M.: Maximum minimal vertex cover parameterized by vertex cover. SIAM J. Discrete Math. 31(4), 2440–2456 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, D., Jacob, A., Kumar, K., Majumdar, D., Raman, V. (2018). Structural Parameterizations of Dominating Set Variants. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics