Skip to main content

Lower Bounds for Unrestricted Boolean Circuits: Open Problems

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

  • 1039 Accesses

Abstract

To prove that \(\text {P} \ne \text {NP}\), it suffices to prove a superpolynomial lower bound on Boolean circuit complexity of a function from NP. Currently, we are not even close to achieving this goal: we do not know how to prove a 4n lower bound. What is more depressing is that there are almost no techniques for proving circuit lower bounds.

In this note, we briefly review various approaches that could potentially lead to stronger linear or superlinear lower bounds for unrestricted Boolean circuits (i.e., circuits with no restriction on depth, fan-out, or basis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jukna, S.: Boolean Function Complexity – Advances and Frontiers. Algorithms and Combinatorics. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24508-4

    Book  MATH  Google Scholar 

  2. Find, M.G., Golovnev, A., Hirsch, E.A., Kulikov, A.S.: A better-than-3n lower bound for the circuit complexity of an explicit function. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, Hyatt Regency, New Brunswick, NJ, USA, 9–11 October 2016, pp. 89–98. IEEE Computer Society (2016)

    Google Scholar 

  3. Golovnev, A., Hirsch, E.A., Knop, A., Kulikov, A.S.: On the limits of gate elimination. [27], pp. 46:1–46:13

    Google Scholar 

  4. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner, Hoboken (1987)

    MATH  Google Scholar 

  5. Lamagna, E.A., Savage, J.E.: On the logical complexity of symmetric switching functions in monotone and complete bases. Technical report, Brown University (1973)

    Google Scholar 

  6. Hiltgen, A.P.: Cryptographically relevant contributions to combinational complexity theory. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (1994)

    Google Scholar 

  7. Blum, N., Seysen, M.: Characterization of all optimal networks for a simultaneous computation of AND and NOR. Acta Inf. 21, 171–181 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Melanich, O.: Technical report (2012)

    Google Scholar 

  9. Chashkin, A.V.: On complexity of Boolean matrices, graphs and corresponding Boolean matrices. Diskretnaya matematika 6(2), 43–73 (1994). (in Russian)

    MATH  Google Scholar 

  10. Demenkov, E., Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: New upper bounds on the Boolean circuit complexity of symmetric functions. Inf. Process. Lett. 110(7), 264–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions. Math. Syst. Theory 10, 323–336 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. SIAM J. Comput. 42(3), 1218–1244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jahanjou, H., Miles, E., Viola, E.: Local reductions. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 749–760. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_61

    Chapter  Google Scholar 

  14. Golovnev, A., Kulikov, A.S., Smal, A.V., Tamaki, S.: Circuit size lower bounds and #SAT upper bounds through a general framework. [27], pp. 45:1–45:16

    Google Scholar 

  15. Williams, R.R.: Some ways of thinking algorithmically about impossibility. SIGLOG News 4(3), 28–40 (2017)

    Google Scholar 

  16. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28(1), 59–98 (1949)

    Article  MathSciNet  Google Scholar 

  17. Ulig, D.: On the synthesis of self-correcting schemes from functional elements with a small number of reliable elements. Math. Notes Acad. Sci. USSR 15(6), 558–562 (1974)

    MathSciNet  Google Scholar 

  18. Valiant, L.G.: Exponential lower bounds for restricted monotone circuits. In: Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch, N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) Proceedings of the 15th Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, USA, 25–27 April 1983, pp. 110–117. ACM (1983)

    Google Scholar 

  19. Viola, E.: On the power of small-depth computation. Found. Trends Theor. Comput. Sci. 5(1), 1–72 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lupanov, O.B.: On rectifier and switching-and-rectifier schemes. Dokl. Akad. Nauk SSSR 111, 1171–1174 (1956)

    MathSciNet  MATH  Google Scholar 

  21. Grigoriev, D.: An application of separability and independence notions for proving lower bounds of circuit complexity. Notes Sci. Semin. LOMI 60, 38–48 (1976)

    Google Scholar 

  22. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977). https://doi.org/10.1007/3-540-08353-7_135

    Chapter  Google Scholar 

  23. Lokam, S.V.: Complexity lower bounds using linear algebra. Found. Trends Theor. Comput. Sci. 4(1–2), 1–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jukna, S., Sergeev, I.: Complexity of linear Boolean operators. Found. Trends Theor. Comput. Sci. 9(1), 1–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nechiporuk, E.I.: Complexity of schemes in certain bases containing nontrivial elements with zero weights. Dokl. Akad. Nauk SSSR 139(6), 1302–1303 (1961)

    MATH  Google Scholar 

  26. Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 45–58. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4_47

    Chapter  Google Scholar 

  27. Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.): 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016. LIPIcs, vol. 58, Kraków, Poland, 22–26 August 2016. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

Download references

Acknowledgments

The research is supported by Russian Science Foundation (project 16-11-10123). The author is thankful to Alexander Golovnev and Edward A. Hirsch for fruitful discussions and many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Kulikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulikov, A.S. (2018). Lower Bounds for Unrestricted Boolean Circuits: Open Problems. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics