Skip to main content

The Clever Shopper Problem

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

  • 1069 Accesses

Abstract

We investigate a variant of the so-called Internet Shopping problem introduced by Blazewicz et al. (2010), where a customer wants to buy a list of products at the lowest possible total cost from shops which offer discounts when purchases exceed a certain threshold. Although the problem is NP-hard, we provide exact algorithms for several cases, e.g. when each shop sells only two items, and an FPT algorithm for the number of items, or for the number of shops when all prices are equal. We complement each result with hardness proofs in order to draw a tight boundary between tractable and intractable cases. Finally, we give an approximation algorithm and hardness results for the problem of maximising the sum of discounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Details will appear in the full version.

References

  1. Assmann, S., Johnson, D., Kleitman, D., Leung, J.-T.: On a dual version of the one-dimensional bin packing problem. J. Algorithms 5, 502–525 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. In: Electronic Colloquium on Computational Complexity (ECCC) (2003)

    Google Scholar 

  3. Blazewicz, J., Kovalyov, M.Y., Musial, J., Urbanski, A.P., Wojciechowski, A.: Internet shopping optimization problem. Appl. Math. Comput. Sci. 20, 385–390 (2010)

    MATH  Google Scholar 

  4. Blazewicz, J., Bouvry, P., Kovalyov, M.Y., Musial, J.: Internet shopping with price sensitive discounts. 4OR 12, 35–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blazewicz, J., Cheriere, N., Dutot, P.-F., Musial, J., Trystram, D.: Novel dual discounting functions for the internet shopping optimization problem: new algorithms. J. Sched. 19, 245–255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28, 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cesati, M.: Perfect code is W[1]-complete. Inf. Process. Lett. 81, 163–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edmonds, J.: Paths, trees and flowers. Canad. J. Math. 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabow, H.N.: A note on degree-constrained star subgraphs of bipartite graphs. Inf. Process. Lett. 5, 165–167 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79, 39–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, Yorktown Heights (1972)

    Google Scholar 

  12. van Bevern, R., Komusiewicz, C., Niedermeier, R., Sorge, M., Walsh, T.: H-index manipulation by merging articles: models, theory, and experiments. Artif. Intell. 240, 19–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Labarre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulteau, L., Hermelin, D., Labarre, A., Vialette, S. (2018). The Clever Shopper Problem. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics