Skip to main content

Purely Synthetic and Domain Independent Consistency-Guaranteed Populations in \(\mathcal {SHIQ}^{(\mathcal {D})}\)

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2017)

Abstract

The elaborations of artificial knowledge bases can represent a clever solution to test new semantics-based infrastructures before deploying them and a precious support to the design of some prototypes. One major challenge of such synthetic data generations is to guarantee the acquisition of sound knowledge bases able to pass the equivalent of a Turing test. That’s why populations have to be restricted to guarantee the consistency until a certain fragment of expressivity. In a past work, we released a first version of a populator guaranteeing the consistency and populating knowledge bases founded on \(\textsc {TBox}\)es expressed in \(\mathcal {ALCQ}^{(\mathcal {D})}\). This purely syntactic and domain independent populator is based on a random process of concept, role and limited data instantiations. In this paper, we propose to extend the expressivity covering by the populator until the fragment \(\mathcal {SHIQ}^{(\mathcal {D})}\). This extension deals with \(\textsc {Rbox}\)es conforming the consistency of the role assertions with respect to the domains/ranges, the universal quantifications and the maximal cardinalities of all the super and inverse roles. Finally, an evaluation of some performances of the populator has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.igi-global.com/dictionary/ontology-population/21134.

  2. 2.

    https://www.w3.org/TR/owl2-direct-semantics/.

  3. 3.

    https://www.w3.org/TR/owl2-syntax/#Datatype_Maps.

  4. 4.

    https://www.w3.org/2007/OWL/wiki/Data_Range_Extension:_Linear_Equations.

  5. 5.

    https://github.com/mkalus/janag.

  6. 6.

    \(\forall _{=n} r.C\) \(\equiv \) \(\forall r.C\) \(\sqcap \) \({=}nr.C\), \(\forall _{\ge n} r.C\) \(\equiv \) \(\forall r.C\) \(\sqcap \) \({\ge }n r.C\) and \(\forall _{\le n} r.C\) \(\equiv \) \(\forall r.C\) \(\sqcap \) \({\le }n r.C\).

  7. 7.

    \({{\mathbf {\mathtt{{JPoT}}}}}\) is available at http://bit.ly/2vh5YE4.

References

  1. Melz, E.R., Macgregor, R.M.: Design, implementation, and analysis of a parallel description classifier. Technical report, University of Southern California Marina Del Rey Information Sciences Inst (1995)

    Google Scholar 

  2. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis, Centre for Telematics and Information Technology, University of Twente, Enschede, The Netherlands (2005)

    Google Scholar 

  3. Bedini, I., Nguyen, B.: Automatic ontology generation: state of the art. PRiSM Laboratory, Technical report. University of Versailles (2007)

    Google Scholar 

  4. Guarino, N., Schneider, L.: Ontology-driven conceptual modelling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, p. 10. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45816-6_4

    Chapter  Google Scholar 

  5. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32254-2_14

    Chapter  Google Scholar 

  6. De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive description logics. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), Cambridge, Massachusetts, USA, 5–8 November 1996, pp. 316–327. Morgan Kaufmann, Los Altos (1996)

    Google Scholar 

  7. Bourguet, J.R.: JPoT: Just another Populator of TBoxes. In: Ventura, J.A.L., Alatrista-Salas, H. (eds.) Proceedings of the 4th Annual International Symposium on Information Management and Big Data - SIMBig 2017. CEUR Workshop Proceedings. CEUR-WS.org (2017, in press)

    Google Scholar 

  8. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48, 1–26 (1991)

    Article  MathSciNet  Google Scholar 

  9. Sattler, U.: A concept language extended with different kinds of transitive roles. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 333–345. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61708-6_74

    Chapter  Google Scholar 

  10. Baader, F., Nutt, W.: Basic description logics, pp. 43–95. Cambridge University Press (2003)

    Google Scholar 

  11. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48242-3_11

    Chapter  MATH  Google Scholar 

  12. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic \(\cal{SHIQ}\). In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 482–496. Springer, Heidelberg (2000). https://doi.org/10.1007/10721959_39

    Chapter  Google Scholar 

  13. Koopmann, P., Schmidt, R.A.: Uniform interpolation of \(\cal{ALC}\)-ontologies using fixpoints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 87–102. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_7

    Chapter  MATH  Google Scholar 

  14. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Web Sem. Sci. Serv. Agents World Wide Web 3(2), 158–182 (2005)

    Article  Google Scholar 

  15. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_12

    Chapter  Google Scholar 

  16. Ongenae, F., Verstichel, S., De Turck, F., Dhaene, T., Dhoedt, B., Demeester, P.: OTAGen: a tunable ontology generator for benchmarking ontology-based agent collaboration. In: 32nd Annual IEEE International on Computer Software and Applications, pp. 529–530. IEEE (2008)

    Google Scholar 

  17. Boeker, M., Hastings, J., Schober, D., Schulz, S.: A T-Box generator for testing scalability of OWL mereotopological patterns. In: Dumontier, M., Courtot, M. (eds.) Proceedings of the 8th International Workshop on OWL: Experiences and Directions. CEUR Workshop Proceedings, vol. 796 (2011)

    Google Scholar 

  18. Chowdhury, N.: Ontoevaluator – SKTI synthetic data generator synthetic data generator (2012)

    Google Scholar 

  19. Horrocks, I., Yatskevich, M., Jiménez-Ruiz, E. (eds.): Proceedings of the 1st International Workshop on OWL Reasoner Evaluation (ORE-2012), Manchester, UK, 1 July 2012. CEUR Workshop Proceedings, vol. 858. CEUR-WS.org (2012)

    Google Scholar 

  20. Li, Y., Yu, Y., Heflin, J.: Evaluating reasoners under realistic semantic web conditions. In: Horrocks, I., Yatskevich, M., Jiménez-Ruiz, E. (eds.) Proceedings of the 1st International Workshop on OWL Reasoner Evaluation. CEUR Workshop Proceedings, vol. 858. CEUR-WS.org (2012)

    Google Scholar 

  21. Bourguet, J.R., Pulina, L.: TROvE: a graphical tool to evaluate OWL reasoners. In: Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Steigmiller, A. (eds.) Informal Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014) Co-Located with the Vienna Summer of Logic (VSL 2014), Vienna, Austria, 13 July 2014. CEUR Workshop Proceedings, vol. 1207, pp. 30–35. CEUR-WS.org (2014)

    Google Scholar 

  22. Batsakis, S., Petrakis, E.G.M., Tachmazidis, I., Antoniou, G.: Temporal representation and reasoning in OWL 2. Sem. Web 8(6), 981–1000 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been made possible by “la Regione Autonoma della Sardegna e Autorità Portuale di Cagliari con L.R. 7/2007, Tender 16 2011, CRP-49656 con il projeto: Metodi innovativi per il supporto alle decisioni riguardanti l’ottimizzazione delle attività in un terminal container” and by “o EDITAL FAPES/CAPES N\(^{\circ }\)009/2014 (Bolsa de fixacão de doutore N\(^{\circ }\)71047522) com a proposta: Melhor integração de tecnologias de representação de conhecimento e raciocínio nas utilizações local e Web”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Rémi Bourguet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourguet, JR. (2018). Purely Synthetic and Domain Independent Consistency-Guaranteed Populations in \(\mathcal {SHIQ}^{(\mathcal {D})}\). In: Lossio-Ventura, J., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2017. Communications in Computer and Information Science, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-319-90596-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90596-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90595-2

  • Online ISBN: 978-3-319-90596-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics