
Lecture Notes in Computer Science 10818

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

John P. Gallagher • Martin Sulzmann (Eds.)

Functional and
Logic Programming
14th International Symposium, FLOPS 2018
Nagoya, Japan, May 9–11, 2018
Proceedings

123

Editors
John P. Gallagher
Roskilde University
Roskilde
Denmark

and

IMDEA Software Institute
Madrid
Spain

Martin Sulzmann
Karlsruhe University of Applied Sciences
Karlsruhe
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-90685-0 ISBN 978-3-319-90686-7 (eBook)
https://doi.org/10.1007/978-3-319-90686-7

Library of Congress Control Number: 2018941546

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 14th International Symposium on Func-
tional and Logic Programming – FLOPS 2018 – held in Nagoya, Japan, May 9–11,
2018.

FLOPS brings together practitioners, researchers, and implementers of declarative
programming, to discuss mutually interesting results and common problems: theoret-
ical advances, their implementations in language systems and tools, and applications
of these systems in practice. The scope includes all aspects of the design, semantics,
theory, applications, implementations, and teaching of declarative programming.
FLOPS specifically aims to promote cross-fertilization between theory and practice and
among different styles of declarative programming.

The call for papers attracted 41 submissions. Each submission was reviewed by at
least three reviewers, either members of the Program Committee (PC) or external
referees. After careful and thorough discussions, the PC accepted 17 papers. The
program also includes three invited talks by William Byrd, Cédric Fournet, and
Zhenjiang Hu.

The award for best paper was made by the PC to Makoto Hamana for the paper
“Polymorphic Computation Rules: Automated Confluence, Type Inference, and
Instance Validation.”

We would like to thank all invited speakers and authors for their contributions. We
are grateful to the PC and external reviewers for their hard work and the help of the
EasyChair conference management system for making our work of organizing FLOPS
2018 much easier. We thank the general chair, Makoto Tatsuta, for his support
throughout the process and taking on many administrative responsibilities. The local
chair, Koji Nakazawa, and the local Organizing Committee did an excellent job in
setting up the conference and making sure everything ran smoothly.

Finally, we would like to thank our sponsor, Japan Society for Software Science and
Technology (JSSST), Special Interest Group on Programming and Programming
Languages (SIG-PPL), for their continuing support. We acknowledge the cooperation
of ACM SIGPLAN.

March 2018 John P. Gallagher
Martin Sulzmann

Organization

Program Committee

María Alpuente Universitat Politècnica de València, Spain
Nikolaj Bjørner Microsoft, USA
Joachim Breitner University of Pennsylvania, USA
Michael Codish Ben-Gurion University of the Negev, Israel
Carsten Fuhs Birkbeck, University of London, UK
John P. Gallagher Roskilde University, Denmark and IMDEA Software

Institute, Spain
Maria Garcia

De La Banda
Monash University, Australia

Jacques Garrigue Nagoya University, Japan
Samir Genaim Universidad Complutense de Madrid, Spain
Robert Glück University of Copenhagen, Denmark
Siau Cheng Khoo National University of Singapore, Singapore
Naoki Kobayashi The University of Tokyo, Japan
Michael Leuschel University of Düsseldorf, Germany
Kenny Zhuo Ming Lu School of Information Technology, Nanyang Polytechnic,

Singapore
Jan Midtgaard University of Southern Denmark, Denmark
Jorge A. Navas SRI International, USA
Atsushi Ohori Tohoku University, Japan
Bruno C. D. S. Oliveira The University of Hong Kong, SAR China
Andreas Rossberg Google, Germany
Didier Rémy Inria, France
Chungchieh Shan Indiana University, Bloomington, USA
Martin Sulzmann Karlsruhe University of Applied Sciences, Germany
Harald Søndergaard The University of Melbourne, Australia
Kazunori Ueda Waseda University, Japan
Meng Wang University of Kent, UK

Additional Reviewers

Amadini, Roberto
Braüner, Torben
Chitil, Olaf
Escobar, Santiago
Felgenhauer, Bertram
Filinski, Andrzej
Frank, Michael

García-Pérez, Álvaro
Goldberg, Mayer
Iwami, Munehiro
Kaarsgaard, Robin
Kirkeby, Maja
Lo, Siaw Ling
Lucas, Salvador

Martin-Martin, Enrique
Muslimany, Morad
Rowe, Reuben
Saikawa, Takahumi
Sapiña, Julia
Schachte, Peter
Schneider-Kamp, Peter
Shani, Guy
Smallbone, Nick
Stadtmueller, Kai
Stuckey, Peter J.

Ta, Quang-Trung
Tsukada, Takeshi
Tsushima, Kanae
Vazou, Niki
Villanueva, Alicia
Wang, Yanlin
Xie, Ningning
Yang, Linus
Yang, Ye
Zhang, Haoyuan
Zhao, Jinxu

VIII Organization

Abstracts of Invited Talks

Can Programming Be Liberated
from Unidirectional Style?

Zhenjiang Hu

National Institute of Informatics, SOKENDAI, Japan
hu@nii.ac.jp

Abstract. Programs usually run unidirectional; computing output from input
and output is not changeable. It is, however, becoming more and more important
to develop programs whose output is subject to change. One typical example is
data synchronization, where we may want to have a consistent schedule infor-
mation by synchronizing calendars in different formats on various systems,
make a smart watch by synchronizing its configuration with the environment, or
achieve data interoperability by synchronization data among subsystems. This
situation imposes difficulty in using the current unidirectional programming
languages to construct such synchronization programs, because it would require
us to develop and maintain several unidirectional programs that are tightly
coupled and should be kept consistent with each other.

In this talk, I will start by briefly reviewing the current work on bidirectional
programming, a new programming paradigm for developing well-behaved
bidirectional programs in order to solve various synchronization problems. I will
then discuss the essence of bidirectional programming, talk about our recent
progress on putback-based bidirectional programming, and show a framework
for supporting systematical development of bidirectional programs. Finally,
I will highlight its potential application to lay the software foundations for
controlling, integrating, and coordinating decentralized data.

miniKanren: A Family of Languages
for Relational Programming

William E. Byrd

Department of Computer Science and Hugh Kaul Precision Medicine Institute,
University of Alabama at Birmingham, USA

webyrd@uab.edu

Abstract. miniKanren is a family of constraint logic programming languages
designed for exploring relational programming. That is, every program written
in miniKanren represents a mathematical relation, and every argument to that
program can be a fresh logic variable, a ground term, or a partially ground term
containing logic variables. The miniKanren language and implementation has
been carefully designed to support this relational style of programming—for
example, miniKanren uses a complete, biased, interleaving search by default,
and unification always uses the occurs check.

miniKanren provides constraints useful for writing interpreters, type infer-
encers, and parsers as relations. One interesting class of miniKanren programs
are interpreters written for a Turing-complete subset of Lisp, supporting lists,
symbols, mutual recursion, and higher-order functions. Since these interpreters
are written as relations, they can perform advanced tasks such as example-based
program synthesis “for free.” By taking advantage of the declarative properties
of miniKanren, and the semantics of Lisp, we have been able to speed up some
synthesis problems by 9 orders of magnitude with respect to the default
miniKanren search. We are actively exploring how to use machine learning and
neural networks to further improve synthesis search.

miniKanren has also been used to prototype language semantics, similarly to
semantics engineering tools like PLT Redex. One variant of miniKanren—a
Kanren, inspired by aProlog—supports nominal unification, and can be used to
implement capture-avoiding substitution as a relation. miniKanren’s relational
nature makes creating an executable semantics for a language easy in some
ways, frustrating in others.

The most recent use of miniKanren is as the foundation of mediKanren, a
language and system for reasoning over biomedical data sources, as part of the
National Institutes of Health’s National Center For Advancing Translational
Sciences (NCATS) Data Translator project. We have scaled miniKanren to
reason over SemMedDB, a database of 97 million biomedical facts, and are
integrating other data sources into the mediKanren system.

Finally, miniKanren is designed to be easy to understand, teach, implement,
and hack. Implementing the miniKanren core language, microKanren, has
become a standard part of learning miniKanren; as a result, there are hundreds of
implementations of miniKanren, embedded in dozens of host languages. We
have invested great effort in writing accessible books and papers on miniKanren,
giving talks at industry and academic conferences, and teaching summer schools

and tutorials. One interesting result of these efforts is that we have developed a
loose, distributed group of miniKanren researchers around the world.

In my talk I will explore these aspects of miniKanren, describe the lessons
we have learned over the past 15 years, and outline the directions for future
work.

miniKanren: A Family of Languages for Relational Programming XIII

Building Verified Cryptographic
Components Using F*

Cédric Fournet

Microsoft Research
fournet@microsoft.com

Abstract. The HTTPS ecosystem includes communications protocols such as
TLS and QUIC, the X.509 public key infrastructure, and various supporting
cryptographic algorithms and constructions. This ecosystem remains surprisingly
brittle, with practical attacks and emergency patches many times a year. To
improve their security, we are developing high-performance, standards-
compliant, formally verified implementation of these components. We aim for
our verified components to be drop-in replacements suitable for use in main-
stream web browsers, servers, and other popular tools.

In this talk, I will give an overview of our approach and our results so far.
I will present our verification toolchain, based on F*: a programming language
with dependent types, programmable monadic effects, support for both
SMT-based and interactive proofs, and extraction to C and assembly code. I will
also illustrate its application using security examples, ranging from the functional
correctness of optimized implementations of cryptographic algorithms to the
security of (fragments of) the new TLS 1.3 Internet Standard.

See https://fstar-lang.org/ for an online tutorial and research papers on F*, and
https://project-everest.github.io/ for its security applications to cryptographic
libraries, TLS, and QUIC.

Contents

Formal Verification of the Correspondence Between Call-by-Need
and Call-by-Name . 1

Masayuki Mizuno and Eijiro Sumii

Direct Encodings of NP-Complete Problems into Horn Sequents
of Multiplicative Linear Logic . 17

Satoshi Matsuoka

k to SKI, Semantically: Declarative Pearl . 33
Oleg Kiselyov

Program Extraction for Mutable Arrays . 51
Kazuhiko Sakaguchi

Functional Pearl: Folding Polynomials of Polynomials 68
Chen-Mou Cheng, Ruey-Lin Hsu, and Shin-Cheng Mu

A Functional Perspective on Machine Learning via Programmable
Induction and Abduction . 84

Steven Cheung, Victor Darvariu, Dan R. Ghica, Koko Muroya,
and Reuben N. S. Rowe

Polymorphic Rewrite Rules: Confluence, Type Inference,
and Instance Validation . 99

Makoto Hamana

Confluence Modulo Equivalence with Invariants in Constraint
Handling Rules . 116

Daniel Gall and Thom Frühwirth

On Probabilistic Term Rewriting. 132
Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada

Equivalence Checking of Non-deterministic Operations 149
Sergio Antoy and Michael Hanus

Optimizing Declarative Parallel Distributed Graph Processing by Using
Constraint Solvers . 166

Akimasa Morihata, Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu,
and Hideya Iwasaki

Breaking Symmetries with Lex Implications . 182
Michael Codish, Thorsten Ehlers, Graeme Gange, Avraham Itzhakov,
and Peter J. Stuckey

Model Checking Parameterized by the Semantics in Maude 198
Adrián Riesco

Automated Amortised Resource Analysis for Term Rewrite Systems 214
Georg Moser and Manuel Schneckenreither

A Common Framework Using Expected Types for Several Type
Debugging Approaches . 230

Kanae Tsushima and Olaf Chitil

CauDEr: A Causal-Consistent Reversible Debugger for Erlang 247
Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal

Cheap Remarks About Concurrent Programs . 264
Michael Walker and Colin Runciman

Author Index . 281

XVI Contents

	Preface
	Organization
	Abstracts of Invited Talks
	Can Programming Be Liberated from Unidirectional Style?
	miniKanren: A Family of Languages for Relational Programming
	Building Verified Cryptographic Components Using F*
	Contents

