Abstract
Stateful migration processes for Cloud Services require the knowledge about their influencing parameters for the migration decision. Previous work focuses on the placement after the migration but not the migration process. In this work we evaluate the impact of network parameters on the migration performance as well as on the migrated applications. Therefore we propose an automatically set up testbed using OpenStack to measure key characteristics of the migration process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pettey, C., Goasduff, L.: Gartner Says Worldwide Public Cloud Services Market to Grow 18 Percent in 2017, February 2017
Fehling, C., Leymann, F., Ruehl, S.T., Rudek, M., Verclas, S.: Service migration patterns-decision support and best practices for the migration of existing service-based applications to cloud environments. In: 2013 IEEE 6th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 9–16. IEEE (2013)
Piao, J.T., Yan, J.: A network-aware virtual machine placement and migration approach in cloud computing. In: 2010 9th International Conference on Grid and Cooperative Computing (GCC), pp. 87–92. IEEE (2010)
Mohammadi, E., Karimi, M., Heikalabad, S.R.: A novel virtual machine placement in cloud computing. Aust. J. Basic Appl. Sci. 5(10), 1549–1555 (2011)
Hyser, C., McKee, B., Gardner, R., Watson, B.J.: Autonomic virtual machine placement in the data center. Technical report, Hewlett Packard Laboratories, HPL-2007-189, vol. 189 (2007)
Shrivastava, V., Zerfos, P., Lee, K.W., Jamjoom, H., Liu, Y.H., Banerjee, S.: Application-aware virtual machine migration in data centers. In: 2011 Proceedings of IEEE INFOCOM, pp. 66–70. IEEE (2011)
Huber, N.M.: Autonomic performance-aware resource management in dynamic IT service infrastructures. Ph.D. thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Dissertation 2014 (2014)
Noorshams, Q., Busch, A., Rentschler, A., Bruhn, D., Kounev, S., Tuma, P., Reussner, R.: Automated modeling of I/O performance and interference effects in virtualized storage systems. In: 2014 IEEE 34th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 88–93. IEEE (2014)
Vaupel, R., Noorshams, Q., Kounev, S., Reussner, R.: Using queuing models for large system migration scenarios – an industrial case study with IBM system z. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 263–275. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40725-3_20
Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the performance of virtual machine migration. In: 2010 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 37–46. IEEE (2010)
Liu, H., Jin, H., Xu, C.Z., Liao, X.: Performance and energy modeling for live migration of virtual machines. Clust. Comput. 16(2), 249–264 (2013)
Sallam, A., Li, K.: A multi-objective virtual machine migration policy in cloud systems. Comput. J. 57(2), 195–204 (2014)
Zheng, J., Ng, T.E., Sripanidkulchai, K., Liu, Z.: Pacer: a progress management system for live virtual machine migration in cloud computing. IEEE Trans. Netw. Serv. Manag. 10(4), 369–382 (2013)
Kapil, D., Pilli, E.S., Joshi, R.C.: Live virtual machine migration techniques: survey and research challenges. In: 2013 IEEE 3rd International Advance Computing Conference (IACC), pp. 963–969. IEEE (2013)
Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Xia, F., Madani, S.A.: Virtual machine migration in cloud data centers: a review, taxonomy, and open research issues. J. Supercomput. 71(7), 2473–2515 (2015)
Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgment Options. RFC 2018 (Proposed Standard), October 1996
De Cicco, L., Caldaralo, V., Palmisano, V., Mascolo, S.: TAPAS: a tool for rApid prototyping of adaptive streaming algorithms. In: Proceedings of the 2014 Workshop on Design, Quality and Deployment of Adaptive Video Streaming, pp. 1–6. ACM (2014)
Acknowledgment
This work was partially supported by German Research Foundation (DFG) under Grant No. KO 3445/11-1. and the H2020 INPUT (Call H2020-ICT-2014-1, Grant No. 644672).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Iffländer, L., Metter, C., Wamser, F., Tran-Gia, P., Kounev, S. (2018). Performance Assessment of Cloud Migrations from Network and Application Point of View. In: Hu, J., Khalil, I., Tari, Z., Wen, S. (eds) Mobile Networks and Management. MONAMI 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-90775-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-90775-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90774-1
Online ISBN: 978-3-319-90775-8
eBook Packages: Computer ScienceComputer Science (R0)