Skip to main content

A Novel Channel Model for Molecular Communications Based on Inter-cellular Calcium Wave

  • Conference paper
  • First Online:

Abstract

Calcium signalling is a good bio-inspired method for molecular communication due to the advantages of biocompatibility, stability, and long communication range. In this paper, we investigate a few channel characteristics of calcium signaling transfer systems including propagation distance and time delay based on a novel inter-cellular calcium wave (ICW) propagation model. Our model is the first one that can investigate the impact of some exclusive parameters in ICW (e.g., the gap junction permeability). Understanding the channel transfer characteristics of ICW can provide a significant reference for the calcium signaling application in molecular communication. In the future, theoretical and simulation results in this paper can help in the design of molecular communication systems between nanodevices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akyildiz, I.F., Brunetti, F., Blazquez, C.: Nanonetworks: a new communication paradigm. Comput. Netw. 52(12), 2260–2279 (2008)

    Article  Google Scholar 

  2. Akyildiz, I.F.: Nanonetworks: a new frontier in communications. In: Proceedings of the 2010, SECRYPT, Athens, Greece, p. IS-5 (2010)

    Google Scholar 

  3. Atakan, B., Akan, O.B., Balasubramaniam, S.: Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun. Mag. 50(1), 28–34 (2012)

    Article  Google Scholar 

  4. Nakano, T.: Biologically inspired network systems: a review and future prospects. IEEE Trans. Syst. Man Cybern. C 41(5), 630–643 (2011)

    Article  Google Scholar 

  5. Kuran, M.S., Tugcu, T., Edis, B.O.: Calcium signaling: overview and research directions of a molecular communication paradigm. IEEE Wirel. Commun. 19(5), 20–27 (2012)

    Article  Google Scholar 

  6. Barros, M.T.: Ca\(^{2+}\)-signaling-based molecular communication systems: design and future research directions. Nano Commun. Netw. 11, 103–113 (2017)

    Article  Google Scholar 

  7. Barros, M.T., Balasubramaniam, S., Jennings, B.: Comparative end-to-end analysis of Ca\(^{2+}\) signaling-based molecular communication in biological tissues. IEEE Trans. Commun. 63, 5128–5142 (2015)

    Article  Google Scholar 

  8. Fink, C., Slepchenko, B., Moraru, I.: An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys. J. 79(1), 163–169 (2000)

    Article  Google Scholar 

  9. Sobie, E., Dilly, K., Dos, S.: Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release. Biophys. J. 83(1), 59–63 (2005)

    Article  Google Scholar 

  10. Bicen, A.O., Akyildiz, I.F., Balasubramaniam, S., Koucheryavy, Y.: Linear channel modeling and error analysis for intra/inter-cellular calcium molecular communication. IEEE Trans. NanoBiosci. 15(5), 488–498 (2016)

    Article  Google Scholar 

  11. Nakano, T., Liu, J.Q.: Design and analysis of molecular relay channels: an information theoretic approach. IEEE Trans. NanoBiosci. 9(3), 213–221 (2010)

    Article  Google Scholar 

  12. Kilinc, D., Akan, O.B.: An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes. IEEE Trans. Nanotechnol. 12(2), 129–136 (2013)

    Article  Google Scholar 

  13. Nakano, T., Suda, T., Koujin, T., Haraguchi, T., Hiraoka, Y.: Molecular communication through gap junction channels. In: Priami, C., Dressler, F., Akan, O.B., Ngom, A. (eds.) Transactions on Computational Systems Biology X. LNCS, vol. 5410, pp. 81–99. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92273-5_5

    Chapter  Google Scholar 

  14. Houart, G., Dupont, G., Goldbeter, A.: Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1, 4, 5-trisphosphate signal in a model for intracellular Ca(2+) oscillations. Bull. Math. Biol. 61(3), 507–530 (1999)

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support from the EPSRC TOUCAN project (Grant No. EP/L020009/1), the EU FP7 QUICK project (Grant No. PIRSES-GA-2013-612652), the EU H2020 5G Wireless project (Grant NO. 641985), Natural Science Foundation of China (Grant No. 61210002 and 61371110), and Key R&D Program of Shandong Province (Grant No. 2016GGX101014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, H., Bian, J., Sun, J., Zhang, W., Wang, CX. (2018). A Novel Channel Model for Molecular Communications Based on Inter-cellular Calcium Wave. In: Li, C., Mao, S. (eds) Wireless Internet. WiCON 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-90802-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90802-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90801-4

  • Online ISBN: 978-3-319-90802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics