Skip to main content

Underwater Networks for Ocean Monitoring: A New Challenge for Topology Control and Opportunistic Routing

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Abstract

Underwater wireless sensor networks (UWSNs) have been proposed for ocean monitoring. In comparison with ocean monitoring technologies currently in use, UWSNs have the potential to revolutionize ocean monitoring applications by enabling (quasi) real-time data acquisition. However, the use of the acoustic channel as well as the characteristics of the aquatic environment present challenges in design of efficient networking protocols for underwater sensor networks. Due to the particular characteristics of UWSNs, well-established principles and designed networking protocols for terrestrial wireless sensor networks cannot be directly applied in underwater sensor networks. In this chapter, we discuss the peculiar characteristics of UWSNs, and how knowledge acquired over decades of research in terrestrial wireless sensor networks is impractical in underwater sensor networks. Moreover, we discuss intrinsic research challenges and provide some guidelines for the future design of topology control algorithms and opportunistic routing protocols for UWSNs, two main methodologies that can improve the performance of UWSN applications. In addition, we provide some future research directions toward enabling large-scale deployments of UWSNs for monitoring large areas of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woods Hole Oceanographic Institution. Know your ocean. http://www.whoi.edu/know-your-ocean/ (2017)

  2. Rossby, T., Dorson, D., Fontaine, J.: The RAFOS system. J. Atmos. Ocean. Technol. 3, 672–680 (1986)

    Article  Google Scholar 

  3. Ocean Networks Canada. Ocean observing systems. http://www.oceannetworks.ca/innovation-centre/smart-ocean-systems/ocean-observing-systems (2017)

  4. NOAA—Office of Response and Restoration. Deepwater horizon oil spill. http://response.restoration.noaa.gov/deepwater-horizon-oil-spill (2017)

  5. Boukerche, A.: Algorithms and Protocols for Wireless Sensor Networks, vol. 62. Wiley-IEEE Press (2008)

    Google Scholar 

  6. Boukerche, A.: Algorithms and Protocols for Wireless, Mobile Ad Hoc Networks, vol. 77. Wiley-IEEE Press (2008)

    Google Scholar 

  7. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

    Article  Google Scholar 

  8. Argo. About argo. http://www.argo.ucsd.edu/ (2017)

  9. National Oceanic and Atmospheric Administration. How much of the ocean have we explored? http://oceanservice.noaa.gov/facts/exploration.html (2017)

  10. Guidoni, D.L., Mini, R.A.F., Loureiro, A.A.F.: On the design of resilient heterogeneous wireless sensor networks based on small world concepts. Comput. Netw. 54(8), 1266–1281 (2010)

    Article  Google Scholar 

  11. Vieira, L.F.M., Lee, U., Gerla, M.: Phero-trail: a bio-inspired location service for mobile underwater sensor networks. IEEE J. Sel. Areas Commun. 28(4), 553–563 (2010)

    Article  Google Scholar 

  12. Han, S., Chen, R., Noh, Y., Gerla, M:. Real-time video streaming from mobile underwater sensors. In: Proceedings of the International Conference on Underwater Networks & Systems (WUWNET), pp. 21:1–21:8 (2014)

    Google Scholar 

  13. Vieira, L.F.M., Vieira, M.A.M., Pinto, D., Nacif, J.A.M., Viana, S.S., Vieira, A.B.: Hydronode: an underwater sensor node prototype for monitoring hydroelectric reservoirs. In: Proceedings of the 7th ACM International Conference on Underwater Networks and Systems (WUWNet), pp. 43:1–43:2 (2012)

    Google Scholar 

  14. Risch, D., Parks, S.E.: Biodiversity assessment and environmental monitoring in freshwater and marine biomes using ecoacoustics. Ecoacoustics: The Ecol. Role Sounds, p. 145 (2017)

    Chapter  Google Scholar 

  15. Dotsenko, S.F., Eremeev, V.N.: Analysis of the necessity and possibility of tsunami early warning on the black-sea coast. Phys. Oceanogr. 18(5), 288–296 (2008)

    Article  Google Scholar 

  16. Khan, A., Jenkins, L.: Undersea wireless sensor network for ocean pollution prevention. In: Proceedings of the 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE), pp. 2–8, Jan 2008

    Google Scholar 

  17. Shukla, A., Karki, H.: Application of robotics in offshore oil and gas industry–a review part II. Robot. Auton. Syst. 75, 508–524 (2015)

    Article  Google Scholar 

  18. Yu, C.H., Min, S.H., Choi, J.W.: Sensor localization-based distributed target tracking filter in underwater sensor networks. In: Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 706–711, July 2015

    Google Scholar 

  19. Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage, and retrieval with an underwater sensor network. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys), pp. 154–165 (2005)

    Google Scholar 

  20. Kato, N., Choyekh, M., Dewantara, R., Senga, H., Chiba, H., Kobayashi, E., Yoshie, M., Tanaka, T., Short, T.: An autonomous underwater robot for tracking and monitoring of subsea plumes after oil spills and gas leaks from seafloor. J. Loss Prev. Process Ind. pp. 1 – 11 (2017)

    Google Scholar 

  21. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: On the design of green protocols for underwater sensor networks. IEEE Commun. Mag. 54(10), 67–73 (2016)

    Article  Google Scholar 

  22. Zhou, Z., Peng, Z., Cui, J.-H., Shi, Z., Bagtzoglou, A.: Scalable localization with mobility prediction for underwater sensor networks. IEEE Trans. Mob. Comput. 10(3), 335–348 (2011)

    Article  Google Scholar 

  23. Di Rienzo, F., Girolami, M., Chessa, S., Paparella, F., Caruso, A.: Signals from the depths: properties of percolation strategies with the argo dataset. In: Proceedings of the IEEE Symposium on Computers and Communication (ISCC), pp. 372–378, June 2016

    Google Scholar 

  24. Stojanovic, M., Preisig, J.: Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag. 47(1), 84–89 (2009)

    Article  Google Scholar 

  25. Brekhovskikh, L.M., Lysanov, Y.P.: Fundamentals of Ocean Acoustics. Springer (2003)

    Google Scholar 

  26. Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of the 1st ACM International Workshop on Underwater Networks (WUWNet), pp. 41–47 (2006)

    Google Scholar 

  27. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv. 37(2), 164–194 (2005)

    Article  MathSciNet  Google Scholar 

  28. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

    MATH  Google Scholar 

  29. Casari, P., Harris, A.F.: Energy-efficient reliable broadcast in underwater acoustic networks. In: Proceedings of the 2nd Workshop on Underwater Networks (WUWNet), pp. 49–56 (2007)

    Google Scholar 

  30. Porto, A., Stojanovic, M.: Optimizing the transmission range in an underwater acoustic network. In: Proceedings of the Oceans, pp. 1–5 (2007)

    Google Scholar 

  31. Su, Y., Zhu, Y., Mo, H., Cui, J.-H., Jin, Z.: A joint power control and rate adaptation mac protocol for underwater sensor networks. Ad Hoc Netw. 26, 36–49 (2015)

    Article  Google Scholar 

  32. Kredo-II, K., Djukic, P., Mohapatra, P.: Stump: exploiting position diversity in the staggered tdma underwater mac protocol. In: Proceedings of the IEEE INFOCOM, pp. 2961–2965, April 2009

    Google Scholar 

  33. Hsu, C.-C., Lai, K.-F., Chou, C.-F., Lin, K.C.J.: St-mac: spatial-temporal mac scheduling for underwater sensor networks. In: Proceedings of the IEEE INFOCOM, pp. 1827–1835, April 2009

    Google Scholar 

  34. Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 23–33 (2007)

    Article  Google Scholar 

  35. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Modeling and analysis of opportunistic routing in low duty-cycle underwater sensor networks. In: Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pp. 125–132 (2015)

    Google Scholar 

  36. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Modeling the sleep interval effects in duty-cycled underwater sensor networks. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 1–6, May 2016

    Google Scholar 

  37. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: A novel centrality metric for topology control in underwater sensor networks. In: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pp. 205–212 (2016)

    Google Scholar 

  38. Younis, M., Senturk, I.F., Akkaya, K., Lee, S., Senel, F.: Topology management techniques for tolerating node failures in wireless sensor networks: a survey. Comput. Netw. 58, 254–283 (2014)

    Article  Google Scholar 

  39. Forero, P.A., Lapic, S.K., Wakayama, C., Zorzi, M.: Rollout algorithms for data storage- and energy-aware data retrieval using autonomous underwater vehicles. In: Proceedings of the International Conference on Underwater Networks & Systems (WUWNET), pp. 22:1–22:8 (2014)

    Google Scholar 

  40. Coutinho, R.W.L., Vieira, L.F.M., Loureiro, A.A.F.: DCR: depth-controlled routing protocol for underwater sensor networks. In: Proceedings of the IEEE Symposium on Computer and Communication (ISCC), pp. 453–458 (2013)

    Google Scholar 

  41. Coutinho, R.W.L., Vieira, L.F.M., Loureiro, A.A.F.: Movement assisted-topology control and geographic routing protocol for underwater sensor networks. In: Proceedings of the 6th ACM International Conference on Modeling, Analysis & Simulation of Wireless and Mobile Systems (MSWiM), pp. 189–196 (2013)

    Google Scholar 

  42. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Gedar: geographic and opportunistic routing protocol with depth adjustment for mobile underwater sensor networks. In: Proceedings of the IEEE International Conference on Communications (ICC), pp 251–256, June 2014

    Google Scholar 

  43. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Netw. 34, 144–156 (2015)

    Article  Google Scholar 

  44. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Geographic and opportunistic routing for underwater sensor networks. IEEE Trans. Comput. 65(2), 548–561 (2016)

    Article  MathSciNet  Google Scholar 

  45. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: EnOR: energy balancing routing protocol for underwater sensor networks. In: Proceedings of the IEEE Internationl Conference on Communications (ICC), pp. 3293–3298, May 2017

    Google Scholar 

  46. Cayirci, E., et al.: Wireless sensor networks for underwater survelliance systems. Ad Hoc Netw. 4(4), 431–446 (2006)

    Article  Google Scholar 

  47. Erol, M., Vieira, L.F.M., Gerla, M.: Localization with dive’n’rise (dnr) beacons for underwater acoustic sensor networks. In: Proceedings of the 2nd Workshop on Underwater Networks (WuWNet), pp. 97–100 (2007)

    Google Scholar 

  48. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Design guidelines for opportunistic routing in underwater networks. IEEE Commun. Mag. 54(2), 40–48 (2016)

    Article  Google Scholar 

  49. Xie, P., Cui, J.-H., Lao, L.: VBF: vector-based forwarding protocol for underwater sensor networks. In: Networking’06, pp. 1216–1221 (2006)

    Chapter  Google Scholar 

  50. Nicolaou, N., See, A., Xie, P., Cui, J.-H., Maggiorini, D.: Improving the robustness of location-based routing for underwater sensor networks. In: Proceedings of the OCEANS 2007—Europe, pp. 1–6, June 2007

    Google Scholar 

  51. Hwang, D., Kim, D.: DFR: directional flooding-based routing protocol for underwater sensor networks. In: Proceedings of the OCEANS, pp. 1–7 (2008)

    Google Scholar 

  52. Yan, H., Shi, Z.J., Cui, J.-H.: DBR: depth-based routing for underwater sensor networks. In: Proceedings of the 7th International IFIP-TC6 Networking, pp. 72–86 (2008)

    Chapter  Google Scholar 

  53. Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., Shi, Z.: Void avoidance in three-dimensional mobile underwater sensor networks. Wirel. Algorithms Syst. Appl. (LNCS) 5682, 305–314 (2009)

    Article  Google Scholar 

  54. Lee, U., Wang, P., Noh, Y., Vieira, L.F.M., Gerla, M., Cui, J.-H.: Pressure routing for underwater sensor networks. In: Proceedings of the 29th Conference on Information Communications (INFOCOM), pp. 1676–1684 (2010)

    Google Scholar 

  55. Noh, Y., Lee, U., Wang, P., Choi, B.S.C., Gerla, M.: Vapr: Void-aware pressure routing for underwater sensor networks. IEEE Trans. Mob. Comput. 12(5), 895–908 (2013)

    Article  Google Scholar 

  56. Chirdchoo, N., Soh, W.-S., Chua, K.C.: Sector-based routing with destination location prediction for underwater mobile networks. In: Proceedings of the Internationl Conference on Advanced Information Networking and Applications Workshops (WAINA ’09), pp. 1148–1153, May 2009

    Google Scholar 

  57. Basagni, S., Petrioli, C., Petroccia, R., Spaccin, D.: Channel-aware routing for underwater wireless networks. In: 2012 Proceedings of the Oceans, pp. 1–9. Yeosu, May 2012

    Google Scholar 

  58. Nowsheen, N., Karmakar, G., Kamruzzaman, J.: An opportunistic message forwarding protocol for underwater acoustic sensor networks. In: Proceedings of the Asia-Pacific Conference on Communications (APCC), pp. 172–177, Aug 2013

    Google Scholar 

  59. Carlson, E.A., Beaujean, P.-P., An, E.: Location-aware routing protocol for underwater acoustic networks. In: Proceedings of the Oceans, pp. 1–6 (2006)

    Google Scholar 

  60. Chen, Y.-D., Chen, Y.-W., Lien, C.-Y., Shih, K.-P.: A channel-aware depth-adaptive routing protocol for underwater acoustic sensor networks. In: 2014 Proceedings of the Oceans, pp. 1–6, Taipei, April 2014

    Google Scholar 

  61. Chen, Y.-D., Lien, C.-Y., Wang, C.-H., Shih, K.-P.: DARP: a depth adaptive routing protocol for large-scale underwater acoustic sensor networks. In: Proceedings of the IEEE Oceans, , pp. 1–6 (2012)

    Google Scholar 

  62. Chen, J., Wu, X., Chen, G.: REBAR: a reliable and energy balanced routing algorithm for uwsns. In: Proceedings of the International Conference on Grid and Cooperative Computing (GCC), pp. 349–355, Oct 2008

    Google Scholar 

  63. Wahid, A., Lee, S., Jeong, H.-J., Kim, D.: EEDBR: energy-efficient depth-based routing protocol for underwater wireless sensor networks. Adv. Comput. Sci. Inf. Technol. 195, 223–234 (2011)

    Article  Google Scholar 

  64. Hu, T., Fei, Y.: QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9(6), 796–809 (2010)

    Article  Google Scholar 

  65. Miquel Jornet, J., Stojanovic, M., Zorzi, M.: Focused beam routing protocol for underwater acoustic networks. In: Proceedings of the 3rd ACM International Workshop on Underwater Networks (WUWNet), pp. 75–82 (2008)

    Google Scholar 

  66. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Performance modeling and analysis of void-handling methodologies in underwater wireless sensor networks. Comput. Netw. 126, 1–14 (2017)

    Article  Google Scholar 

  67. Ghoreyshi, S.M., Shahrabi, A., Boutaleb, T.: Void-handling techniques for routing protocols in underwater sensor networks: survey and challenges. IEEE Commun. Surv. Tutor. 19(2), 800–827, Secondquarter 2017

    Article  Google Scholar 

  68. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Local maximum routing recovery in underwater sensor networks: performance and trade-offs. In: Proceedings of the IEEE 22nd International Symposium on Modelling, Analysis Simulation of Computer and Telecommunication Systems (MASCOTs), pp. 112–119, Sept 2014

    Google Scholar 

  69. Jaffe, J., Schurgers, C.: Sensor networks of freely drifting autonomous underwater explorers. In: Proceedings of the 1st ACM International Workshop on Underwater Networks (WUWNet), pp. 93–96 (2006)

    Google Scholar 

  70. Biswas, S., Morris, R.: Exor: opportunistic multi-hop routing for wireless networks. SIGCOMM Comput. Commun. Rev. 35(4), 133–144 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo W. L. Coutinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coutinho, R.W.L., Boukerche, A., Loureiro, A.A.F. (2019). Underwater Networks for Ocean Monitoring: A New Challenge for Topology Control and Opportunistic Routing. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-91146-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91146-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91145-8

  • Online ISBN: 978-3-319-91146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics