Skip to main content

Resource Allocation and Task Scheduling in the Cloud of Sensors

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 163))

Abstract

The cloud of sensors (CoS) paradigm has emerged from the broader concept of Cloud of Things, and it denotes the integration of clouds and wireless sensor and actuator networks (WSANs). By integrating clouds with WSAN, some tasks initially assigned to smart sensors can be off-loaded to the cloud, thus benefiting from the huge computational capacity of these platforms. However, for time-critical applications, the high and unstable latency between the sensors and the cloud is not desirable. Besides low latency, WSAN applications usually require mobility and location-awareness properties, not often supported by current cloud platforms. Moreover, the indiscriminate off-loading of data/tasks from sensors to the cloud may lead to an overutilization of the network bandwidth while, in some cases, sensor-generated data could be locally processed and immediately discarded. To overcome these drawbacks of the integration between WSANs and the cloud, the edge paradigm emerges as a promising solution. Edge computing refers to enabling the computing directly at the edge of the network (for instance, through smart gateways and micro-data centers). Combining the paradigms of cloud/edge computing and WSANs in a three-tier architecture potentially leverages mutual advantages while posing novel research challenges. One of such challenges regards the development of solutions for performing resource allocation and task scheduling for CoS. Both edge and cloud paradigms strongly rely on the virtualization of physical resources. Therefore, resource allocation in CoS refers to the process of allocating instances of virtual nodes to perform the application requests (workload) submitted to the CoS, trying to meet as best as possible the requirements of applications, while respecting the constraints of the underlying physical infrastructure. Task scheduling denotes the process of selecting a group of physical nodes that are suitable for the execution, in a given order, of the various tasks necessary to meet an application request. The goal of this chapter is to overview the state of the art in the development of solutions for these two essential activities for the construction and efficient execution of CoS infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksic, S.: Green ICT for sustainability: a holistic approach. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May, pp. 426–431 (2014). https://doi.org/10.1109/mipro.2014.6859604

  2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  3. Botta, A., et al.: On the integration of cloud computing and Internet of Things. In: International Conference on Future IoT and Cloud (FiCloud), pp. 23–30 (2014)

    Google Scholar 

  4. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent developments and potential synergies. J. Supercomput. 68(1), 1–48 (2013). https://doi.org/10.1007/s11227-013-1021-9

    Article  Google Scholar 

  5. Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S., Alelaiwi, A., Hossain, M.A.: A survey on sensor-cloud: architecture, applications, and approaches. Int. J. Distrib. Sens. Netw. 2013, 1–18 (2013). http://doi.org/10.1155/2013/917923

    Article  Google Scholar 

  6. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in Fog computing supported software-defined embedded system. IEEE Trans. Comput. PP(99), 1–1 (2016). http://doi.org/10.1109/TC.2016.2536019

    Article  MathSciNet  Google Scholar 

  7. Yi, S., Li, C., Li, Q.: A survey of Fog computing. In: Proceedings of the 2015 Workshop on Mobile Big Data—Mobidata ’15, pp. 37–42. ACM Press, New York, New York, USA (2015). http://doi.org/10.1145/2757384.2757397

  8. Li, W., Santos, I., Delicato, F.C., Pires, P.F., Pirmez, L., Wei, W., Khan, S.: System modelling and performance evaluation of a three-tier Cloud of Things. Future Gener. Comput. Syst. (2016). https://doi.org/10.1016/j.future.2016.06.019

    Article  Google Scholar 

  9. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 (2012). http://doi.org/10.1145/2342509.2342513

  10. Santos, I.L., Pirmez, L., Delicato, F.C., Khan, S.U., Zomaya, A.Y.: Olympus: the cloud of sensors. IEEE Cloud Comput. 2(2), 48–56 (2015). https://doi.org/10.1109/MCC.2015.43

    Article  Google Scholar 

  11. Islam, M.M., Hassan, M.M., Lee, G.-W., Huh, E.-N.: A survey on virtualization of wireless sensor networks. Sensors 12(12), 2175–2207 (2012). https://doi.org/10.3390/s120202175

    Article  Google Scholar 

  12. Rowaihy, H., Johnson, M.P., Liu, O., Bar-Noy, A., Brown, T., Porta, T.La.: Sensor-mission assignment in wireless sensor networks. ACM Trans. Sens. Netw. 6(4), 1–33 (2010). https://doi.org/10.1145/1777406.1777415

    Article  Google Scholar 

  13. Preece, A., Braines, D., Pizzocaro, D., Parizas, C.: Human-machine conversations to support mission-oriented information provision. In: Proceedings of the 2nd ACM Annual International Workshop on Mission-Oriented Wireless Sensor Networking—MiSeNet ’13, p. 43. ACM Press, New York, New York, USA (2013). http://doi.org/10.1145/2509338.2509342

  14. Santos, L., Pirmez, L., Carmo, L.R., Pires, P.F., Delicato, F.C., Khan, S.U., Zomaya, A.Y.: A decentralized damage detection system for wireless sensor and actuator networks. IEEE Trans. Comput. 65, 1363–1376 (2016). https://doi.org/10.1109/tc.2015.2479608

    Article  MathSciNet  Google Scholar 

  15. Delgado, C., Gallego, J.R., Canales, M., Ortin, J., Bousnina, S., Cesana, M.: An optimization framework for resource allocation in virtual sensor networks. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2015). http://doi.org/10.1109/GLOCOM.2015.7417187

  16. Delgado, C., Gállego, J.R., Canales, M., Ortín, J., Bousnina, S., Cesana, M.: On optimal resource allocation in virtual sensor networks. Ad Hoc Netw. 50, 23–40 (2016). https://doi.org/10.1016/j.adhoc.2016.04.004

    Article  Google Scholar 

  17. De Farias, C.M., Li, W., Delicato, F.C., Pirmez, L., Zomaya, A.Y., Pires, P.F., De Souza, J.N.: A systematic review of shared sensor networks. ACM Comput. Surv. 48(4), 1–50 (2016). https://doi.org/10.1145/2851510

    Article  Google Scholar 

  18. Sinnen, O.: Task scheduling for parallel systems. In: Wiley Series on Parallel and Distributed Computing (2007). https://doi.org/10.1002/9780470121177.scard

    Article  Google Scholar 

  19. Iman, M., Delicato, F.C., de Farias, C.M., Pirmez, L., dos Santos, I.L., Pires, P.F.: THESEUS: a routing system for shared sensor networks. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 108–115. IEEE (2015). http://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.18

  20. Eltarras, R., Eltoweissy, M.: Adaptive multi-criteria routing for shared sensor-actuator networks. In: GLOBECOM—IEEE Global Telecommunications Conference (2010). https://doi.org/10.1109/GLOCOM.2010.5683555

    Article  Google Scholar 

  21. Barbaran, J., Diaz, M., Rubio, B.: A virtual channel-based framework for the integration of wireless sensor networks in the cloud. In: 2014 International Conference on Future Internet of Things and Cloud, pp. 334–339. IEEE (2014). http://doi.org/10.1109/FiCloud.2014.59

  22. Saha, S.: Secure sensor data management model in a sensor-cloud integration environment. In: 2015 Applications and Innovations in Mobile Computing (AIMoC), pp. 158–163. IEEE (2015). http://doi.org/10.1109/AIMOC.2015.7083846

  23. Das, C., Tripathy, S.P.: A review on virtualization in wireless sensor network. 1(1), 1–8 (2010)

    Google Scholar 

  24. Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., Polakos, P.: Wireless sensor network virtualization: a survey. IEEE Commun. Surv. Tutor. 18(1), 553–576 (2016). https://doi.org/10.1109/COMST.2015.2412971

    Article  Google Scholar 

  25. Bouzeghoub, M.: A framework for analysis of data freshness. In: Proceedings of the 2004 International Workshop on Information Quality in Informational Systems—IQIS ’04, vol. 59 (2004). http://doi.org/10.1145/1012453.1012464

  26. Gonçalves, B., Filho, J.G.P., Guizzardi, G.: A service architecture for sensor data provisioning for context-aware mobile applications. In: Proceedings of the 2008 ACM Symposium on Applied Computing—SAC ’08, vol. 1946 (2008). http://doi.org/10.1145/1363686.1364155

  27. Yang, R., Wo, T., Hu, C., Xu, J., Zhang, M.: D^2PS: a dependable data provisioning service in multi-tenant cloud environment. In: 2016 IEEE 17th International Symposium on High Assurance Systems Engineering (HASE), pp. 252–259 (2016). http://doi.org/10.1109/HASE.2016.26

  28. Li, W., Delicato, F.C., Pires, P.F., Lee, Y.C., Zomaya, A.Y., Miceli, C., Pirmez, L.: Efficient allocation of resources in multiple heterogeneous wireless sensor networks. J. Parallel Distrib. Comput. 74(1), 1775–1788 (2014). https://doi.org/10.1016/j.jpdc.2013.09.012

    Article  Google Scholar 

  29. Bauer, M., Bui, N., Jardak, C., Nettsträter, A.: The IoT ARM reference manual. In: Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S. (eds.) Enabling Things to Talk, pp. 213–236. Springer, Berlin, Heidelberg (2013). http://doi.org/10.1007/978-3-642-40403-0_9

    Chapter  Google Scholar 

  30. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management: reactive versus proactive or let’s be friends. Comput. Netw. 53(17), 2905–2922 (2009). https://doi.org/10.1016/j.comnet.2009.08.011

    Article  Google Scholar 

  31. de Farias, C.M., Pirmez, L., Delicato, F.C., Li, W., Zomaya, A.Y., de Souza, J.N.: A scheduling algorithm for shared sensor and actuator networks. In: The International Conference on Information Networking 2013 (ICOIN), pp. 648–653 (2013). http://doi.org/10.1109/ICOIN.2013.6496703

  32. Gonçalves, G.E., Endo, P.T., Cordeiro, T.D., Palhares, André Vitor de Almeida Sadok, D., Kelner, J., Melander, B., Mångs, J.-E.: Resource allocation in clouds: concepts, tools and research challenges. Minicursos - XXIX Simpósio Brasileiro de Redes de Computadores E Sistemas Distribuídos, pp. 197–240 (2011). http://www.cricte2004.eletrica.ufpr.br/anais/sbrc/2011/files/mc/mc5.pdf

  33. Liu, R., Wassell, I.J.: Opportunities and challenges of wireless sensor networks using cloud services. In: Proceedings of the Workshop on Internet of Things and Service Platforms—IoTSP ’11, pp. 1–7. ACM Press, New York, New York, USA (2011). https://doi.org/10.1145/2079353.2079357

  34. Aleksic, S.: Green ICT for sustainability: a holistic approach. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May, pp. 426–431 (2014). https://doi.org/10.1109/mipro.2014.6859604

  35. Open Geospatial Consortium [Online]. http://www.opengeospatial.org/

  36. Zhang, J., Huang, H., Wang, X.: Resource provision algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 64, 23–42 (2016). https://doi.org/10.1016/j.jnca.2015.12.018

    Article  Google Scholar 

  37. Kaur Kapoor, N., Majumdar, S., Nandy, B.: Techniques for allocation of sensors in shared wireless sensor networks. J. Netw. 10(1), 15–28 (2015). https://doi.org/10.4304/jnw.10.1.15-28

    Article  Google Scholar 

  38. Raghavendra, P.: Approximating NP-Hard Problems Efficient Algorithms and Their Limits (2009)

    Google Scholar 

  39. Bolaños, R.I., Echeverry, M.G., Escobar, J.W.: A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the multiple traveling salesman problem. Decis. Sci. Lett. 4(4), 559–568 (2015). https://doi.org/10.5267/j.dsl.2015.5.003

    Article  Google Scholar 

  40. Vanderbei, R.J.: Linear programming: foundations and extensions. J. Oper. Res. Soc. 49(1), 94–94 (1998). http://doi.org/10.1057/palgrave.jors.2600987

    Article  Google Scholar 

  41. Garey, M.R., Johnson, D.S.: Computers and intractability (1979)

    Google Scholar 

  42. Phan, D., Suzuki, J., Omura, S., Oba, K.: Toward sensor-cloud integration as a service: optimizing three-tier communication in cloud-integrated sensor networks. In: Proceedings of the 8th International Conference on Body Area Networks, vol. 1. ACM (2013). http://doi.org/10.4108/icst.bodynets.2013.253639

  43. Zhu, C., Li, X., Leung, V.C.M., Hu, X., Yang, L.T.: Job scheduling for cloud computing integrated with wireless sensor network. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 62–69 (2014). http://doi.org/10.1109/CloudCom.2014.106

  44. Dalvi, R.: Energy efficient scheduling and allocation of tasks in sensor cloud (2014)

    Google Scholar 

  45. Yao, R., Wang, W., Shin, S., Son, S.H., Jeon, S.I.: Competition-based device-to-device transmission scheduling to support wireless cloud multimedia communications. Int. J. Distrib. Sens. Netw. 2014 (2014). http://doi.org/10.1155/2014/869514

    Article  Google Scholar 

  46. Li, J., Pan, Q., Mao, K.: Solving complex task scheduling by a hybrid genetic algorithm, pp. 3440–3443 (2014)

    Google Scholar 

  47. Kim, M., Ko, I.Y.: An efficient resource allocation approach based on a genetic algorithm for composite services in IoT environments. In: Proceedings—2015 IEEE International Conference on Web Services, ICWS 2015, pp. 543–550 (2015). http://doi.org/10.1109/ICWS.2015.78

  48. Kim, S.: Asymptotic shapley value based resource allocation scheme for IoT services. Comput. Netw. 100, 55–63 (2016). https://doi.org/10.1016/j.comnet.2016.02.021

    Article  Google Scholar 

  49. Li, L., Li, S., Zhao, S.: QoS-aware scheduling of services-oriented Internet of Things. IEEE Trans. Ind. Inf. 10(2), 1497–1505 (2014). https://doi.org/10.1109/TII.2014.2306782

    Article  MathSciNet  Google Scholar 

  50. Billet, B., Issarny, V.: From task graphs to concrete actions: a new task mapping algorithm for the future Internet of Things. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 470–478. IEEE (2014). http://doi.org/10.1109/MASS.2014.20

  51. Dai, L., Xu, H.K., Chen, T., Qian, C., Xie, L.J., Chen, T.: A multi-objective optimization algorithm of task scheduling in WSN. 9(2), 160–171 (2014)

    Google Scholar 

  52. Wu, C., Xu, Y., Chen, Y., Lu, C.: Submodular game for distributed application allocation in shared sensor networks. In: Proceedings—IEEE INFOCOM, pp. 127–135 (2012). http://doi.org/10.1109/INFCOM.2012.6195490

  53. Wang, F., Han, G., Jiang, J., Qiu, H.: A distributed task allocation strategy for collaborative applications in cluster-based wireless sensor networks. Int. J. Distrib. Sens. Netw. 2014(i), 1–16 (2014). http://doi.org/10.1155/2014/964595

    Article  Google Scholar 

  54. Hu, W., O’Rourke, D., Kusy, B., Wark, T.: A virtual sensor scheduling framework for heterogeneous wireless sensor networks. In: 38th Annual IEEE Conference on Local Computer Networks, pp. 655–658. IEEE (2013). http://doi.org/10.1109/LCN.2013.6761303

  55. Edalat, N., Xiao, W., Roy, N., Das, S.K., Motani, M.: Combinatorial auction-based task allocation in multi-application wireless sensor networks. In: 2011 IFIP 9th International Conference on Embedded and Ubiquitous Computing, pp. 174–181. IEEE (2011). http://doi.org/10.1109/EUC.2011.22

  56. Bhattacharya, S., Saifullah, A., Lu, C., Roman, G.-C.: Multi-application deployment in shared sensor networks based on quality of monitoring. In: 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium, vol. 4, pp. 259–268. IEEE (2010). http://doi.org/10.1109/RTAS.2010.20

  57. Li, W., Delicato, F.C., Zomaya, A.Y.: Adaptive energy-efficient scheduling for hierarchical wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 1–34 (2013). https://doi.org/10.1145/2480730.2480736

    Article  Google Scholar 

  58. Misra, S., Chatterjee, S., Obaidat, M.S.: On theoretical modeling of sensor cloud: a paradigm shift from wireless sensor network. IEEE Syst. J. 1–10 (2014). http://doi.org/10.1109/JSYST.2014.2362617S

  59. Dinh, T., Kim, Y.: An efficient interactive model for on-demand sensing-as-a-services of sensor-cloud. Sensors 16(7), 992 (2016). https://doi.org/10.3390/s16070992

    Article  Google Scholar 

  60. Narman, H.S., Hossain, M.S., Atiquzzaman, M., Shen, H.: Scheduling internet of things applications in cloud computing. Ann. Telecommun. (2016). https://doi.org/10.1007/s12243-016-0527-6

    Article  Google Scholar 

  61. Yu, R., Zhang, Y., Gjessing, S., Xia, W., Yang, K.: Toward cloud-based vehicular networks with efficient resource management. IEEE Netw. 27(5), 48–55 (2013). https://doi.org/10.1109/MNET.2013.6616115

    Article  Google Scholar 

  62. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. PP(99), 1–1 (2016). http://doi.org/10.1109/TC.2016.2536019

    Article  MathSciNet  Google Scholar 

  63. Angelakis, V., Avgouleas, I., Pappas, N., Yuan, D.: Flexible allocation of heterogeneous resources to services on an IoT device. In: Proceedings—IEEE INFOCOM, 2015–Augus(5), 99–100 (2015). http://doi.org/10.1109/INFCOMW.2015.7179362

  64. Vögler, M., Schleicher, J.M., Inzinger, C., Nastic, S., Sehic, S., Dustdar, S.: LEONORE—large-scale provisioning of resource-constrained IoT deployments. In: 9th International Symposium on Service-Oriented System Engineering (2015). http://doi.org/10.1109/SOSE.2015.23

  65. Aazam, M., St-Hilaire, M., Lung, C.H., Lambadaris, I.: PRE-Fog: IoT trace based probabilistic resource estimation at Fog. In: 2016 13th IEEE Annual Consumer Communications and Networking Conference, CCNC 2016, pp. 12–17 (2016). http://doi.org/10.1109/CCNC.2016.7444724

  66. Aazam, M., Huh, E.-N.: Resource management in media cloud of things. In: 2014 43rd International Conference on Parallel Processing Workshops, vol. 2015–May, pp. 361–367. IEEE (2014). http://doi.org/10.1109/ICPPW.2014.54

  67. Abedin, S.F., Alam, M.G.R., Tran, N.H., Hong, C.S.: A Fog based system model for cooperative IoT node pairing using matching theory. In: 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 309–314. IEEE (2015). http://doi.org/10.1109/APNOMS.2015.7275445

  68. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks. ACM Comput. Surv. 39(3), 9–es (2007). http://doi.org/10.1145/1267070.1267073

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the following Brazilian funding agencies: National Council for Scientific and Technological Development (CNPq), Financier of Studies and Projects (FINEP), and the Foundation for Research of the State of Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia C. Delicato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Santos, I.L., Delicato, F.C., Pirmez, L., Pires, P.F., Zomaya, A.Y. (2019). Resource Allocation and Task Scheduling in the Cloud of Sensors. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-91146-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91146-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91145-8

  • Online ISBN: 978-3-319-91146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics