Abstract
The cloud of sensors (CoS) paradigm has emerged from the broader concept of Cloud of Things, and it denotes the integration of clouds and wireless sensor and actuator networks (WSANs). By integrating clouds with WSAN, some tasks initially assigned to smart sensors can be off-loaded to the cloud, thus benefiting from the huge computational capacity of these platforms. However, for time-critical applications, the high and unstable latency between the sensors and the cloud is not desirable. Besides low latency, WSAN applications usually require mobility and location-awareness properties, not often supported by current cloud platforms. Moreover, the indiscriminate off-loading of data/tasks from sensors to the cloud may lead to an overutilization of the network bandwidth while, in some cases, sensor-generated data could be locally processed and immediately discarded. To overcome these drawbacks of the integration between WSANs and the cloud, the edge paradigm emerges as a promising solution. Edge computing refers to enabling the computing directly at the edge of the network (for instance, through smart gateways and micro-data centers). Combining the paradigms of cloud/edge computing and WSANs in a three-tier architecture potentially leverages mutual advantages while posing novel research challenges. One of such challenges regards the development of solutions for performing resource allocation and task scheduling for CoS. Both edge and cloud paradigms strongly rely on the virtualization of physical resources. Therefore, resource allocation in CoS refers to the process of allocating instances of virtual nodes to perform the application requests (workload) submitted to the CoS, trying to meet as best as possible the requirements of applications, while respecting the constraints of the underlying physical infrastructure. Task scheduling denotes the process of selecting a group of physical nodes that are suitable for the execution, in a given order, of the various tasks necessary to meet an application request. The goal of this chapter is to overview the state of the art in the development of solutions for these two essential activities for the construction and efficient execution of CoS infrastructures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aleksic, S.: Green ICT for sustainability: a holistic approach. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May, pp. 426–431 (2014). https://doi.org/10.1109/mipro.2014.6859604
Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
Botta, A., et al.: On the integration of cloud computing and Internet of Things. In: International Conference on Future IoT and Cloud (FiCloud), pp. 23–30 (2014)
Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent developments and potential synergies. J. Supercomput. 68(1), 1–48 (2013). https://doi.org/10.1007/s11227-013-1021-9
Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S., Alelaiwi, A., Hossain, M.A.: A survey on sensor-cloud: architecture, applications, and approaches. Int. J. Distrib. Sens. Netw. 2013, 1–18 (2013). http://doi.org/10.1155/2013/917923
Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in Fog computing supported software-defined embedded system. IEEE Trans. Comput. PP(99), 1–1 (2016). http://doi.org/10.1109/TC.2016.2536019
Yi, S., Li, C., Li, Q.: A survey of Fog computing. In: Proceedings of the 2015 Workshop on Mobile Big Data—Mobidata ’15, pp. 37–42. ACM Press, New York, New York, USA (2015). http://doi.org/10.1145/2757384.2757397
Li, W., Santos, I., Delicato, F.C., Pires, P.F., Pirmez, L., Wei, W., Khan, S.: System modelling and performance evaluation of a three-tier Cloud of Things. Future Gener. Comput. Syst. (2016). https://doi.org/10.1016/j.future.2016.06.019
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 (2012). http://doi.org/10.1145/2342509.2342513
Santos, I.L., Pirmez, L., Delicato, F.C., Khan, S.U., Zomaya, A.Y.: Olympus: the cloud of sensors. IEEE Cloud Comput. 2(2), 48–56 (2015). https://doi.org/10.1109/MCC.2015.43
Islam, M.M., Hassan, M.M., Lee, G.-W., Huh, E.-N.: A survey on virtualization of wireless sensor networks. Sensors 12(12), 2175–2207 (2012). https://doi.org/10.3390/s120202175
Rowaihy, H., Johnson, M.P., Liu, O., Bar-Noy, A., Brown, T., Porta, T.La.: Sensor-mission assignment in wireless sensor networks. ACM Trans. Sens. Netw. 6(4), 1–33 (2010). https://doi.org/10.1145/1777406.1777415
Preece, A., Braines, D., Pizzocaro, D., Parizas, C.: Human-machine conversations to support mission-oriented information provision. In: Proceedings of the 2nd ACM Annual International Workshop on Mission-Oriented Wireless Sensor Networking—MiSeNet ’13, p. 43. ACM Press, New York, New York, USA (2013). http://doi.org/10.1145/2509338.2509342
Santos, L., Pirmez, L., Carmo, L.R., Pires, P.F., Delicato, F.C., Khan, S.U., Zomaya, A.Y.: A decentralized damage detection system for wireless sensor and actuator networks. IEEE Trans. Comput. 65, 1363–1376 (2016). https://doi.org/10.1109/tc.2015.2479608
Delgado, C., Gallego, J.R., Canales, M., Ortin, J., Bousnina, S., Cesana, M.: An optimization framework for resource allocation in virtual sensor networks. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2015). http://doi.org/10.1109/GLOCOM.2015.7417187
Delgado, C., Gállego, J.R., Canales, M., Ortín, J., Bousnina, S., Cesana, M.: On optimal resource allocation in virtual sensor networks. Ad Hoc Netw. 50, 23–40 (2016). https://doi.org/10.1016/j.adhoc.2016.04.004
De Farias, C.M., Li, W., Delicato, F.C., Pirmez, L., Zomaya, A.Y., Pires, P.F., De Souza, J.N.: A systematic review of shared sensor networks. ACM Comput. Surv. 48(4), 1–50 (2016). https://doi.org/10.1145/2851510
Sinnen, O.: Task scheduling for parallel systems. In: Wiley Series on Parallel and Distributed Computing (2007). https://doi.org/10.1002/9780470121177.scard
Iman, M., Delicato, F.C., de Farias, C.M., Pirmez, L., dos Santos, I.L., Pires, P.F.: THESEUS: a routing system for shared sensor networks. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 108–115. IEEE (2015). http://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.18
Eltarras, R., Eltoweissy, M.: Adaptive multi-criteria routing for shared sensor-actuator networks. In: GLOBECOM—IEEE Global Telecommunications Conference (2010). https://doi.org/10.1109/GLOCOM.2010.5683555
Barbaran, J., Diaz, M., Rubio, B.: A virtual channel-based framework for the integration of wireless sensor networks in the cloud. In: 2014 International Conference on Future Internet of Things and Cloud, pp. 334–339. IEEE (2014). http://doi.org/10.1109/FiCloud.2014.59
Saha, S.: Secure sensor data management model in a sensor-cloud integration environment. In: 2015 Applications and Innovations in Mobile Computing (AIMoC), pp. 158–163. IEEE (2015). http://doi.org/10.1109/AIMOC.2015.7083846
Das, C., Tripathy, S.P.: A review on virtualization in wireless sensor network. 1(1), 1–8 (2010)
Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., Polakos, P.: Wireless sensor network virtualization: a survey. IEEE Commun. Surv. Tutor. 18(1), 553–576 (2016). https://doi.org/10.1109/COMST.2015.2412971
Bouzeghoub, M.: A framework for analysis of data freshness. In: Proceedings of the 2004 International Workshop on Information Quality in Informational Systems—IQIS ’04, vol. 59 (2004). http://doi.org/10.1145/1012453.1012464
Gonçalves, B., Filho, J.G.P., Guizzardi, G.: A service architecture for sensor data provisioning for context-aware mobile applications. In: Proceedings of the 2008 ACM Symposium on Applied Computing—SAC ’08, vol. 1946 (2008). http://doi.org/10.1145/1363686.1364155
Yang, R., Wo, T., Hu, C., Xu, J., Zhang, M.: D^2PS: a dependable data provisioning service in multi-tenant cloud environment. In: 2016 IEEE 17th International Symposium on High Assurance Systems Engineering (HASE), pp. 252–259 (2016). http://doi.org/10.1109/HASE.2016.26
Li, W., Delicato, F.C., Pires, P.F., Lee, Y.C., Zomaya, A.Y., Miceli, C., Pirmez, L.: Efficient allocation of resources in multiple heterogeneous wireless sensor networks. J. Parallel Distrib. Comput. 74(1), 1775–1788 (2014). https://doi.org/10.1016/j.jpdc.2013.09.012
Bauer, M., Bui, N., Jardak, C., Nettsträter, A.: The IoT ARM reference manual. In: Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S. (eds.) Enabling Things to Talk, pp. 213–236. Springer, Berlin, Heidelberg (2013). http://doi.org/10.1007/978-3-642-40403-0_9
Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management: reactive versus proactive or let’s be friends. Comput. Netw. 53(17), 2905–2922 (2009). https://doi.org/10.1016/j.comnet.2009.08.011
de Farias, C.M., Pirmez, L., Delicato, F.C., Li, W., Zomaya, A.Y., de Souza, J.N.: A scheduling algorithm for shared sensor and actuator networks. In: The International Conference on Information Networking 2013 (ICOIN), pp. 648–653 (2013). http://doi.org/10.1109/ICOIN.2013.6496703
Gonçalves, G.E., Endo, P.T., Cordeiro, T.D., Palhares, André Vitor de Almeida Sadok, D., Kelner, J., Melander, B., Mångs, J.-E.: Resource allocation in clouds: concepts, tools and research challenges. Minicursos - XXIX Simpósio Brasileiro de Redes de Computadores E Sistemas Distribuídos, pp. 197–240 (2011). http://www.cricte2004.eletrica.ufpr.br/anais/sbrc/2011/files/mc/mc5.pdf
Liu, R., Wassell, I.J.: Opportunities and challenges of wireless sensor networks using cloud services. In: Proceedings of the Workshop on Internet of Things and Service Platforms—IoTSP ’11, pp. 1–7. ACM Press, New York, New York, USA (2011). https://doi.org/10.1145/2079353.2079357
Aleksic, S.: Green ICT for sustainability: a holistic approach. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May, pp. 426–431 (2014). https://doi.org/10.1109/mipro.2014.6859604
Open Geospatial Consortium [Online]. http://www.opengeospatial.org/
Zhang, J., Huang, H., Wang, X.: Resource provision algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 64, 23–42 (2016). https://doi.org/10.1016/j.jnca.2015.12.018
Kaur Kapoor, N., Majumdar, S., Nandy, B.: Techniques for allocation of sensors in shared wireless sensor networks. J. Netw. 10(1), 15–28 (2015). https://doi.org/10.4304/jnw.10.1.15-28
Raghavendra, P.: Approximating NP-Hard Problems Efficient Algorithms and Their Limits (2009)
Bolaños, R.I., Echeverry, M.G., Escobar, J.W.: A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the multiple traveling salesman problem. Decis. Sci. Lett. 4(4), 559–568 (2015). https://doi.org/10.5267/j.dsl.2015.5.003
Vanderbei, R.J.: Linear programming: foundations and extensions. J. Oper. Res. Soc. 49(1), 94–94 (1998). http://doi.org/10.1057/palgrave.jors.2600987
Garey, M.R., Johnson, D.S.: Computers and intractability (1979)
Phan, D., Suzuki, J., Omura, S., Oba, K.: Toward sensor-cloud integration as a service: optimizing three-tier communication in cloud-integrated sensor networks. In: Proceedings of the 8th International Conference on Body Area Networks, vol. 1. ACM (2013). http://doi.org/10.4108/icst.bodynets.2013.253639
Zhu, C., Li, X., Leung, V.C.M., Hu, X., Yang, L.T.: Job scheduling for cloud computing integrated with wireless sensor network. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 62–69 (2014). http://doi.org/10.1109/CloudCom.2014.106
Dalvi, R.: Energy efficient scheduling and allocation of tasks in sensor cloud (2014)
Yao, R., Wang, W., Shin, S., Son, S.H., Jeon, S.I.: Competition-based device-to-device transmission scheduling to support wireless cloud multimedia communications. Int. J. Distrib. Sens. Netw. 2014 (2014). http://doi.org/10.1155/2014/869514
Li, J., Pan, Q., Mao, K.: Solving complex task scheduling by a hybrid genetic algorithm, pp. 3440–3443 (2014)
Kim, M., Ko, I.Y.: An efficient resource allocation approach based on a genetic algorithm for composite services in IoT environments. In: Proceedings—2015 IEEE International Conference on Web Services, ICWS 2015, pp. 543–550 (2015). http://doi.org/10.1109/ICWS.2015.78
Kim, S.: Asymptotic shapley value based resource allocation scheme for IoT services. Comput. Netw. 100, 55–63 (2016). https://doi.org/10.1016/j.comnet.2016.02.021
Li, L., Li, S., Zhao, S.: QoS-aware scheduling of services-oriented Internet of Things. IEEE Trans. Ind. Inf. 10(2), 1497–1505 (2014). https://doi.org/10.1109/TII.2014.2306782
Billet, B., Issarny, V.: From task graphs to concrete actions: a new task mapping algorithm for the future Internet of Things. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 470–478. IEEE (2014). http://doi.org/10.1109/MASS.2014.20
Dai, L., Xu, H.K., Chen, T., Qian, C., Xie, L.J., Chen, T.: A multi-objective optimization algorithm of task scheduling in WSN. 9(2), 160–171 (2014)
Wu, C., Xu, Y., Chen, Y., Lu, C.: Submodular game for distributed application allocation in shared sensor networks. In: Proceedings—IEEE INFOCOM, pp. 127–135 (2012). http://doi.org/10.1109/INFCOM.2012.6195490
Wang, F., Han, G., Jiang, J., Qiu, H.: A distributed task allocation strategy for collaborative applications in cluster-based wireless sensor networks. Int. J. Distrib. Sens. Netw. 2014(i), 1–16 (2014). http://doi.org/10.1155/2014/964595
Hu, W., O’Rourke, D., Kusy, B., Wark, T.: A virtual sensor scheduling framework for heterogeneous wireless sensor networks. In: 38th Annual IEEE Conference on Local Computer Networks, pp. 655–658. IEEE (2013). http://doi.org/10.1109/LCN.2013.6761303
Edalat, N., Xiao, W., Roy, N., Das, S.K., Motani, M.: Combinatorial auction-based task allocation in multi-application wireless sensor networks. In: 2011 IFIP 9th International Conference on Embedded and Ubiquitous Computing, pp. 174–181. IEEE (2011). http://doi.org/10.1109/EUC.2011.22
Bhattacharya, S., Saifullah, A., Lu, C., Roman, G.-C.: Multi-application deployment in shared sensor networks based on quality of monitoring. In: 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium, vol. 4, pp. 259–268. IEEE (2010). http://doi.org/10.1109/RTAS.2010.20
Li, W., Delicato, F.C., Zomaya, A.Y.: Adaptive energy-efficient scheduling for hierarchical wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 1–34 (2013). https://doi.org/10.1145/2480730.2480736
Misra, S., Chatterjee, S., Obaidat, M.S.: On theoretical modeling of sensor cloud: a paradigm shift from wireless sensor network. IEEE Syst. J. 1–10 (2014). http://doi.org/10.1109/JSYST.2014.2362617S
Dinh, T., Kim, Y.: An efficient interactive model for on-demand sensing-as-a-services of sensor-cloud. Sensors 16(7), 992 (2016). https://doi.org/10.3390/s16070992
Narman, H.S., Hossain, M.S., Atiquzzaman, M., Shen, H.: Scheduling internet of things applications in cloud computing. Ann. Telecommun. (2016). https://doi.org/10.1007/s12243-016-0527-6
Yu, R., Zhang, Y., Gjessing, S., Xia, W., Yang, K.: Toward cloud-based vehicular networks with efficient resource management. IEEE Netw. 27(5), 48–55 (2013). https://doi.org/10.1109/MNET.2013.6616115
Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. PP(99), 1–1 (2016). http://doi.org/10.1109/TC.2016.2536019
Angelakis, V., Avgouleas, I., Pappas, N., Yuan, D.: Flexible allocation of heterogeneous resources to services on an IoT device. In: Proceedings—IEEE INFOCOM, 2015–Augus(5), 99–100 (2015). http://doi.org/10.1109/INFCOMW.2015.7179362
Vögler, M., Schleicher, J.M., Inzinger, C., Nastic, S., Sehic, S., Dustdar, S.: LEONORE—large-scale provisioning of resource-constrained IoT deployments. In: 9th International Symposium on Service-Oriented System Engineering (2015). http://doi.org/10.1109/SOSE.2015.23
Aazam, M., St-Hilaire, M., Lung, C.H., Lambadaris, I.: PRE-Fog: IoT trace based probabilistic resource estimation at Fog. In: 2016 13th IEEE Annual Consumer Communications and Networking Conference, CCNC 2016, pp. 12–17 (2016). http://doi.org/10.1109/CCNC.2016.7444724
Aazam, M., Huh, E.-N.: Resource management in media cloud of things. In: 2014 43rd International Conference on Parallel Processing Workshops, vol. 2015–May, pp. 361–367. IEEE (2014). http://doi.org/10.1109/ICPPW.2014.54
Abedin, S.F., Alam, M.G.R., Tran, N.H., Hong, C.S.: A Fog based system model for cooperative IoT node pairing using matching theory. In: 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 309–314. IEEE (2015). http://doi.org/10.1109/APNOMS.2015.7275445
Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks. ACM Comput. Surv. 39(3), 9–es (2007). http://doi.org/10.1145/1267070.1267073
Acknowledgements
This work is partly supported by the following Brazilian funding agencies: National Council for Scientific and Technological Development (CNPq), Financier of Studies and Projects (FINEP), and the Foundation for Research of the State of Rio de Janeiro (FAPERJ).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
dos Santos, I.L., Delicato, F.C., Pirmez, L., Pires, P.F., Zomaya, A.Y. (2019). Resource Allocation and Task Scheduling in the Cloud of Sensors. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-91146-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-91146-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91145-8
Online ISBN: 978-3-319-91146-5
eBook Packages: EngineeringEngineering (R0)