Skip to main content

Review of Research Progress, Trends and Gap in Occupancy Sensing for Sophisticated Sensory Operation

  • Conference paper
  • First Online:
Cybernetics and Algorithms in Intelligent Systems (CSOC2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 765))

Included in the following conference series:

  • 828 Accesses

Abstract

With the adoption of increasing number of occupancy sensor in building premises, there is a growing concern about the inclusion of the smarter features for catering up sophisticated demands of information processing in Internet-of-Things (IoT). Although, there are various commercially available occupancy sensors, but there is a bigger deal of trade-off between the existing offered featured and actual demands of the user that is quite dynamic. Therefore, we reviewed the most potential research work carried out towards incorporating various features of occupancy sensor in present times in order to investigate the degree of effectiveness in existing research contribution with respect to problems, techniques, advantages, and limitation. This is the first reported review manuscript in occupancy sensing that offers a quick view of existing research trends as well as brief of potential research gap with respect to open-end problems that are yet to be solved in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krarti, M.: Energy Audit of Building Systems: An Engineering Approach, 2nd edn. CRC Press, Boca Raton (2016)

    Google Scholar 

  2. Benya, J.R., Leban, D.J.: Lighting Retrofit, and Relighting: A Guide to Energy Efficient Lighting. Wiley, Hoboken (2011)

    Google Scholar 

  3. Fraden, J.: Handbook of Modern Sensors: Physics, Designs, and Applications. Springer, Heidelberg (2015)

    Google Scholar 

  4. Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L.: Smart Sensors at the IoT Frontier. Springer, Heidelberg (2017)

    Google Scholar 

  5. Pritoni, M., Wooley, J.M., Modera, M.P.: Do occupancy-responsive learning thermostats save energy? A field study in university residence halls. Elsevier J. Energy Buildings 127, 469–478 (2016)

    Article  Google Scholar 

  6. Rafsanjani, H.N., Ahn, C.R., Alahmad, M.: A review of approaches for sensing, understanding, and improving occupancy-related energy-use behaviors in commercial buildings. J. Energies 8, 10996–11029 (2015)

    Article  Google Scholar 

  7. Kjærgaard, M.B., Lazarova-Molnar, S., Jradi, M.: Poster abstract: towards a categorization framework for occupancy sensing systems. In: Proceedings of the Sixth ACM International Conference on Future Energy Systems (e-Energy), pp. 215–216. Association for Computing Machinery (2015). https://doi.org/10.1145/2768510.2770947

  8. Kleiminger, W., Staake, T., Santini, S.: Occupancy Detection from Electricity Consumption Data. ACM, New York (2013)

    Book  Google Scholar 

  9. Zhang, J., Liu, G., Dasu, A.: Review of literature on terminal box control, occupancy sensing technology and multi-zone Demand Control Ventilation (DCV). Technical report of U.S. Department of Energy (2012)

    Google Scholar 

  10. Eedara, P., Li, H., Janakiraman, N., Tungala, N.R.A., Chamberland, J.F., Huff, G.H.: Occupancy estimation with wireless monitoring devices and application-specific antennas. IEEE Trans. Sig. Process. 65(8), 2123–2135 (2017)

    Article  MathSciNet  Google Scholar 

  11. Iyer, B., Pathak, N.P., Ghosh, D.: Dual-Input Dual-Output RF sensor for indoor human occupancy and position monitoring. IEEE Sens. J. 15(7), 3959–3966 (2015)

    Article  Google Scholar 

  12. Liu, P., Nguang, S.K., Partridge, A.: Occupancy inference using pyroelectric infrared sensors through hidden markov models. IEEE Sens. J. 16(4), 1062–1068 (2016)

    Article  Google Scholar 

  13. Li, B., Li, S., Nallanathan, A., Nan, Y., Zhao, C., Zhou, Z.: Deep sensing for next-generation dynamic spectrum sharing: more than detecting the occupancy state of primary spectrum. IEEE Trans. Commun. 63(7), 2442–2457 (2015)

    Article  Google Scholar 

  14. Avestruz, A.T., Cooley, J.J., Vickery, D., Paris, J., Leeb, S.B.: Dimmable solid state ballast with integral capacitive occupancy sensor. IEEE Trans. Ind. Electronics 59(4), 1739–1750 (2012)

    Article  Google Scholar 

  15. Cooley, J.J., Avestruz, A.T., Leeb, S.B.: A retrofit capacitive sensing occupancy detector using fluorescent lamps. IEEE Trans. Industr. Electronics 59(4), 1898–1911 (2012)

    Article  Google Scholar 

  16. George, B., Zangl, H., Bretterklieber, T., Brasseur, G.: A combined inductive-capacitive proximity sensor for seat occupancy detection. IEEE Trans. Instrum. Meas. 59(5), 1463–1470 (2010)

    Article  Google Scholar 

  17. Hossain, K., Champagne, B.: Wideband spectrum sensing for cognitive radios with correlated subband occupancy. IEEE Sig. Process. Lett. 18(1), 35–38 (2011)

    Article  Google Scholar 

  18. Mary Reena, K.E., Mathew, A.T., Jacob, L.: An occupancy based cyber-physical system design for intelligent building automation. Math. Prob. Eng. 2015, 15 (2015)

    Article  Google Scholar 

  19. Vidal, C., F-Sánchez, C., Díaz, J., Pérez, J.: A model-driven engineering process for autonomic sensor-actuator networks. Int. J. Distrib. Sens. Netw. 11(3), 684892 (2015)

    Article  Google Scholar 

  20. Hua, Z.-X., Chen, X.: Multisensor track occupancy detection model based on chaotic neural networks. Int. J. Distrib. Sens. Netw. 11(7), 896340 (2015)

    Article  Google Scholar 

  21. Man, D., Yang, W., Xuan, S., Du, X.: Thwarting nonintrusive occupancy detection attacks from smart meters. Secur. Commun. Netw. 2017, 9 (2017)

    Article  Google Scholar 

  22. Agarwal, Y., Balaji, B., Gupta, R., Lyles, J., Wei, M., Weng, T.: Occupancy-driven energy management for smart building automation. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, pp. 1–6 (2010)

    Google Scholar 

  23. Hammoud, A., Deriaz, M., Konstantas, D.: UltraSense: a self-calibrating ultrasound-based room occupancy sensing system. Procedia Comput. Sci. 109, 75–83 (2017)

    Article  Google Scholar 

  24. Shih, O., Lazik, P., Rowe, A.: AURES: a wide-band ultrasonic occupancy sensing platform. In: Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments, pp. 157–166 (2016)

    Google Scholar 

  25. Schoofs, A., Delaney, D.T., MP O’Hare, G., Ruzzelli, A.G.: COPOLAN: non-invasive occupancy profiling for preliminary assessment of HVAC fixed timing strategies. In: Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 25–30 (2011)

    Google Scholar 

  26. Chen, Z., Zhao, R., Zhu, Q., Masood, M.K., Soh, Y.C., Mao, K.: Building occupancy estimation with environmental sensors via CDBLSTM. IEEE Trans. Ind. Electronics PP(99), 1 (2017)

    Google Scholar 

  27. Depatla, S., Muralidharan, A., Mostofi, Y.: Occupancy estimation using only WiFi power measurements. IEEE J. Sel. Areas Commun. 33(7), 1381–1393 (2015)

    Article  Google Scholar 

  28. Ebadat, A., Bottegal, G., Varagnolo, D., Wahlberg, B., Johansson, K.H.: Regularized deconvolution-based approaches for estimating room occupancies. IEEE Trans. Autom. Sci. Eng. 12(4), 1157–1168 (2015)

    Article  Google Scholar 

  29. Lam, A.H., Yuan, Y., Wang, D.: An occupant-participatory approach for thermal comfort enhancement and energy conservation in buildings. In: Proceedings of the 5th International Conference on Future Energy Systems, pp. 133–143 (2014)

    Google Scholar 

  30. Forouzanfar, M., Mabrouk, M., Rajan, S., Bolic, M., Dajani, H.R., Groza, V.Z.: Event recognition for contactless activity monitoring using phase-modulated continuous wave Radar. IEEE Trans. Biomed. Eng. 64(2), 479–491 (2017)

    Article  Google Scholar 

  31. Mikkelsen, L., Buchakchiev, R., Madsen, T., Schwefel, H.P.: Public transport occupancy estimation using WLAN probing. In: 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), Halmstad, pp. 302–308 (2016)

    Google Scholar 

  32. Munir, S., et al.: Real-time fine grained occupancy estimation using depth sensors on ARM embedded platforms. In: 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Pittsburgh, PA, pp. 295–306 (2017)

    Google Scholar 

  33. Nagarathinam, S., Iyer, S.R., Vasan, A., Sarangan, V., Sivasubramaniam, A.: On the utility of occupancy sensing for managing HVAC energy in large zones. In: Proceedings of the ACM Sixth International Conference on Future Energy Systems, pp. 219–220 (2015)

    Google Scholar 

  34. Lu, J., Sookoor, T., Srinivasan, V., Gao, G., Holben, B., Stankovic, J., Field, E., Whitehouse, K.: The smart thermostat: using occupancy sensors to save energy in homes. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pp. 211–224. ACM (2010)

    Google Scholar 

  35. Tyndall, A., Cardell-Oliver, R., Keating, A.: Occupancy estimation using a low-pixel count thermal imager. IEEE Sens. J. 1(10), 3784–3791 (2016)

    Article  Google Scholar 

  36. Scott, J., Brush, A.J.B., Krumm, J., Meyers, B., Hazas, M., Hodges, S., Villar, N.: PreHeat: controlling home heating using occupancy prediction. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 281–290. ACM (2011)

    Google Scholar 

  37. Yang, Y., Hao, J., Luo, J., Pan, S.J.: CeilingSee: device-free occupancy inference through lighting infrastructure based LED sensing. In: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kona, HI, pp. 247–256 (2017)

    Google Scholar 

  38. de Bakker, C., van de Voort, T., van Duijhoven, J., Rosemann, A.: Assessing the energy use of occupancy-based lighting control strategies in open-plan offices. In: 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, pp. 476–481 (2017)

    Google Scholar 

  39. Steyer, S., Tanzmeister, G., Wollherr, D.: Object tracking based on evidential dynamic occupancy grids in urban environments. In: 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, pp. 1064–1070 (2017)

    Google Scholar 

  40. Nesa, N., Banerjee, I.: IoT-based sensor data fusion for occupancy sensing using dempster-shafer evidence theory for smart buildings. IEEE Internet of Things J. PP(99), 1 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethi K. Mane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mane, P.K., Narasimha Rao, K. (2019). Review of Research Progress, Trends and Gap in Occupancy Sensing for Sophisticated Sensory Operation. In: Silhavy, R. (eds) Cybernetics and Algorithms in Intelligent Systems . CSOC2018 2018. Advances in Intelligent Systems and Computing, vol 765. Springer, Cham. https://doi.org/10.1007/978-3-319-91192-2_22

Download citation

Publish with us

Policies and ethics