Skip to main content

Modelling and Identification of Magnetic Levitation Model CE 152/Revised

  • Conference paper
  • First Online:
Cybernetics and Algorithms in Intelligent Systems (CSOC2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 765))

Included in the following conference series:

  • 858 Accesses

Abstract

Paper describes procedure of first principle modelling and experimental identification of Magnetic Levitation Model CE 152. Author optimized and simplified dynamical model to a minimum what is needed to characterize given system for the simulation and control design purposes. Only few experiments are needed to estimate the unknown parameters. Model quality is verified in the feedback control loop where the real and simulated data are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CE152 – Experiment, Magnetic Levitation Model. https://www.tecquipment.com/magnetic-levitation-model

  2. Bächle, T., Hentzelt, S., Graichen, K.: Nonlinear model predictive control of a magnetic levitation system. Control Eng. Pract. 21(9), 1178–1187 (2013)

    Article  Google Scholar 

  3. Doležel, P., Rozsíval, P., Mariška, M., Havlíček, L.: PID controller design for nonlinear oscillative plants using piecewise linear neural network. In: Proceedings of the 19th International Conference on Process Control, PC 2013, pp. 19–24 (2013)

    Google Scholar 

  4. Gazdoš, F., Dostál, P., Marholt, J.: Robust control of unstable systems: algebraic approach using sensitivity functions. Int. J. Math. Models Methods Appl. Sci. 5(7), 1189–1196 (2011)

    Google Scholar 

  5. Gazdoš, F., Dostál, P., Pelikán, R., Bobál, V.: Polynomial approach to control system design for a magnetic levitation system. In: 2007 European Control Conference, ECC 2007, pp. 4561–4567 (2007)

    Google Scholar 

  6. Hypiusová, M., Kozáková, A.: Robust PID controller design for the magnetic levitation system: frequency domain approach. In: Proceedings of the 21st International Conference on Process Control, PC 2017, pp. 274–279 (2017)

    Google Scholar 

  7. Chalupa, P., Novák, J., Malý, M.: Modelling and model predictive control of magnetic levitation laboratory plant. In: Proceedings of the 31st European Conference on Modelling and Simulation, ECMS 2017, pp. 367–373 (2017)

    Google Scholar 

  8. Qin, Y., Peng, H., Ruan, W.: Modeling and predictive control of magnetic levitation ball system based on RBF-ARX model with linear functional weights. Sci. Technol. 47(8), 2676–2684 (2016). Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University

    Google Scholar 

  9. Rušar, L., Krhovják, A., Bobál, V.: Predictive control of the magnetic levitation model. In: Proceedings of the 21st International Conference on Process Control, PC 2017, pp. 345–350 (2017)

    Google Scholar 

  10. Stettinger, G., Benedikt, M., Horn, M., Zehetner, J., Giebenhain, C.: Control of a magnetic levitation system with communication imperfections: a model-based coupling approach. Control Eng. Pract. 58, 161–170 (2017)

    Article  Google Scholar 

  11. Du, X., Zhang, Y.: An improved method of mathematical model on current controlled magnetic levitation ball system. Appl. Mech. Mater. 128–129, 70–73 (2012)

    Google Scholar 

  12. Galvão, R.K.H., Yoneyama, T., De Araújo, F.M.U., Machado, R.G.: A simple technique for identifying a linearized model for a didactic magnetic levitation system. IEEE Trans. Educ. 46(1), 22–25 (2003)

    Article  Google Scholar 

  13. Guess, T.M., Alciatore, D.G.: Model development and control implementation for a magnetic levitation apparatus. In: ASME Database Symposium, pp. 993–999 (1995)

    Google Scholar 

  14. Humusoft: CE 152 Magnetic levitation model – educational manual. Humusoft s.r.o., Prague (2002)

    Google Scholar 

  15. Chalupa, P., Malý, M., Novák, J.: Nonlinear simulink model of magnetic levitation laboratory plant. In: Proceedings of the 30th European Conference on Modelling and Simulation, ECMS 2016, pp. 293–299 (2016)

    Google Scholar 

  16. Jiang, D., Yang, J., Ma, L., Jiang, D.: Model building and simulating for hybrid magnetic levitation ball system. In: International Conference on Mechanic Automation and Control Engineering, MACE 2010, pp. 6105–6110 (2010)

    Google Scholar 

  17. Owen, R.B., Maggiore, M.: Implementation and model verification of a magnetic levitation system. In: Proceedings of the American Control Conference, pp. 1142–1147 (2005)

    Google Scholar 

  18. Pilat, A.: Modelling, investigation, simulation, and PID current control of active magnetic levitation FEM model. In: 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, pp. 299–304 (2013)

    Google Scholar 

  19. Sankar, R.C., Chidambaram, M.: Subspace identification of unstable transfer function model for a magnetic levitation system. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 394–399 (2014)

    Google Scholar 

  20. Šuster, P., Jadlovská, A.: Modeling and control design of magnetic levitation system. In: Proceedings of the IEEE 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics, SAMI 2012, pp. 295–299 (2012)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Institutional support of The Ministry of Education, Youth and Sports of the Czech Republic at FEI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Honc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Honc, D. (2019). Modelling and Identification of Magnetic Levitation Model CE 152/Revised. In: Silhavy, R. (eds) Cybernetics and Algorithms in Intelligent Systems . CSOC2018 2018. Advances in Intelligent Systems and Computing, vol 765. Springer, Cham. https://doi.org/10.1007/978-3-319-91192-2_4

Download citation

Publish with us

Policies and ethics