Abstract
Paper describes procedure of first principle modelling and experimental identification of Magnetic Levitation Model CE 152. Author optimized and simplified dynamical model to a minimum what is needed to characterize given system for the simulation and control design purposes. Only few experiments are needed to estimate the unknown parameters. Model quality is verified in the feedback control loop where the real and simulated data are compared.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CE152 – Experiment, Magnetic Levitation Model. https://www.tecquipment.com/magnetic-levitation-model
Bächle, T., Hentzelt, S., Graichen, K.: Nonlinear model predictive control of a magnetic levitation system. Control Eng. Pract. 21(9), 1178–1187 (2013)
Doležel, P., Rozsíval, P., Mariška, M., Havlíček, L.: PID controller design for nonlinear oscillative plants using piecewise linear neural network. In: Proceedings of the 19th International Conference on Process Control, PC 2013, pp. 19–24 (2013)
Gazdoš, F., Dostál, P., Marholt, J.: Robust control of unstable systems: algebraic approach using sensitivity functions. Int. J. Math. Models Methods Appl. Sci. 5(7), 1189–1196 (2011)
Gazdoš, F., Dostál, P., Pelikán, R., Bobál, V.: Polynomial approach to control system design for a magnetic levitation system. In: 2007 European Control Conference, ECC 2007, pp. 4561–4567 (2007)
Hypiusová, M., Kozáková, A.: Robust PID controller design for the magnetic levitation system: frequency domain approach. In: Proceedings of the 21st International Conference on Process Control, PC 2017, pp. 274–279 (2017)
Chalupa, P., Novák, J., Malý, M.: Modelling and model predictive control of magnetic levitation laboratory plant. In: Proceedings of the 31st European Conference on Modelling and Simulation, ECMS 2017, pp. 367–373 (2017)
Qin, Y., Peng, H., Ruan, W.: Modeling and predictive control of magnetic levitation ball system based on RBF-ARX model with linear functional weights. Sci. Technol. 47(8), 2676–2684 (2016). Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University
Rušar, L., Krhovják, A., Bobál, V.: Predictive control of the magnetic levitation model. In: Proceedings of the 21st International Conference on Process Control, PC 2017, pp. 345–350 (2017)
Stettinger, G., Benedikt, M., Horn, M., Zehetner, J., Giebenhain, C.: Control of a magnetic levitation system with communication imperfections: a model-based coupling approach. Control Eng. Pract. 58, 161–170 (2017)
Du, X., Zhang, Y.: An improved method of mathematical model on current controlled magnetic levitation ball system. Appl. Mech. Mater. 128–129, 70–73 (2012)
Galvão, R.K.H., Yoneyama, T., De Araújo, F.M.U., Machado, R.G.: A simple technique for identifying a linearized model for a didactic magnetic levitation system. IEEE Trans. Educ. 46(1), 22–25 (2003)
Guess, T.M., Alciatore, D.G.: Model development and control implementation for a magnetic levitation apparatus. In: ASME Database Symposium, pp. 993–999 (1995)
Humusoft: CE 152 Magnetic levitation model – educational manual. Humusoft s.r.o., Prague (2002)
Chalupa, P., Malý, M., Novák, J.: Nonlinear simulink model of magnetic levitation laboratory plant. In: Proceedings of the 30th European Conference on Modelling and Simulation, ECMS 2016, pp. 293–299 (2016)
Jiang, D., Yang, J., Ma, L., Jiang, D.: Model building and simulating for hybrid magnetic levitation ball system. In: International Conference on Mechanic Automation and Control Engineering, MACE 2010, pp. 6105–6110 (2010)
Owen, R.B., Maggiore, M.: Implementation and model verification of a magnetic levitation system. In: Proceedings of the American Control Conference, pp. 1142–1147 (2005)
Pilat, A.: Modelling, investigation, simulation, and PID current control of active magnetic levitation FEM model. In: 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, pp. 299–304 (2013)
Sankar, R.C., Chidambaram, M.: Subspace identification of unstable transfer function model for a magnetic levitation system. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 394–399 (2014)
Šuster, P., Jadlovská, A.: Modeling and control design of magnetic levitation system. In: Proceedings of the IEEE 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics, SAMI 2012, pp. 295–299 (2012)
Acknowledgments
This research was supported by Institutional support of The Ministry of Education, Youth and Sports of the Czech Republic at FEI.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Honc, D. (2019). Modelling and Identification of Magnetic Levitation Model CE 152/Revised. In: Silhavy, R. (eds) Cybernetics and Algorithms in Intelligent Systems . CSOC2018 2018. Advances in Intelligent Systems and Computing, vol 765. Springer, Cham. https://doi.org/10.1007/978-3-319-91192-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-91192-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91191-5
Online ISBN: 978-3-319-91192-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)