Skip to main content

Algorithm for the Fusion of Ultrasound Tomography Breast Images Allowing Automatic Discrimination Between Benign and Malignant Tumors in Screening Tests

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Abstract

This paper presents an algorithm which allows a multi-para-meter in vivo visualization of a breast structure by fusing two quantitative ultrasound tomography images and by automatically identifying areas of fat and glandular tissue, as well as areas of benign or malignant lesions, with the background of the reflection ultrasound tomography image of structures scattering ultrasonic waves. The threshold values for identifying particular tissue areas in quantitative images were adjusted to patient age using empirical linear functions. The viability of the algorithm was confirmed in preliminary in vivo breast ultrasound tomography screening tests. The obtained results allow a prediction that the ultrasound tomography scanner, which uses the here-presented algorithm to fuse the reconstructed images, and which is currently deployed by the private investor in cooperation with the authors of this paper, will provide a new standard in breast cancer diagnostics through fast and cheap screening tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. André, M., et al.: Quantitative volumetric breast imaging with 3D inverse scatter computed tomography. In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, vol. 34, San Diego (2012)

    Google Scholar 

  2. Birk, M., Kretzek, E., et al.: High-speed medical imaging in 3D ultrasound computer tomography. IEEE Trans. Parallel Distrib. Syst. 27(2), 455–467 (2016)

    Article  Google Scholar 

  3. Boston, W.: Siemens Tees Up Health-Care IPO in One of Biggest European Deals in Years. The Wall Street Journal, Business (2017)

    Google Scholar 

  4. Chang, C.-H., Huang, S.-W., et al.: Reconstruction of ultrasonic sound velocity and attenuation coefficient using linear arrays: clinical assessment. Ultrasound Med. Biol. 33(11), 1681–1687 (2007)

    Article  Google Scholar 

  5. Cobbold, R.S.C.: Foundations of Biomedical Ultrasound. Oxford University Press, New York (2007)

    Google Scholar 

  6. Doyley, M.M., Parker, K.J.: Elastography: general principles and clinical applications. Ultrasound Clin. 9(1), 1–11 (2014)

    Article  Google Scholar 

  7. Duck, F.A.: Physical Properties of Tissue. Academic Press, London (1990)

    Google Scholar 

  8. Duric, N., Littrup, P., et al.: Breast imaging with the SoftVue imaging system: first results. In: Bosch, J.G., Doyley, M.M. (eds.) Proceedings of SPIE 2013. Medical Imaging 2013: Ultrasonic Imaging, Tomography, and Therapy, vol. 8675. SPIE (2013)

    Google Scholar 

  9. Edmonds, P.D., Mortensen, C.L., et al.: Ultrasound tissue characterization of breast biopsy specimens. Ultrason. Imaging 13(2), 162–185 (1991)

    Article  Google Scholar 

  10. Forbes, Nauka i Społeczeństwo. Polska rodzinna firma zmienia oblicze medycyny. Przełom w diagnostyce nowotworów, 24 April 2017. https://www.forbes.pl/innogy/nauka-i-spoleczenstwo/rak.../k0et0qj. (in Polish)

  11. Gordon, P.B., Goldenberg, S.L.: Malignant breast masses detected only by ultrasound: a retrospective review. Cancer 76(4), 626–630 (1995)

    Article  Google Scholar 

  12. Greenleaf, J.F., Johnson, S.A., et al.: Quantitative cross-sectional imaging of ultrasound parameters. In: Proceedings of IEEE Ultrasonics Symposium, Phoenix, USA (1977)

    Google Scholar 

  13. Hooley, R.J., Scoutt, L.M., Philpotts, L.E.: Breast ultrasonography: state of the art. Radiology 268(3), 612–659 (2013)

    Article  Google Scholar 

  14. Hopp, T., Zapf, M., et al.: 3D ultrasound computer tomography: update from a clinical study 2016. In: Duric, N., Heyde, B. (eds.) Proceedings of SPIE 2016. Medical Imaging 2016: Ultrasonic Imaging and Tomography, vol. 9790, pp. 97900A-1–9. SPIE (2016)

    Google Scholar 

  15. Hortobagyi, G.N., de la Salazar, J.G., et al.: The global breast cancer burden: variations in epidemiology and survival. Clin. Breast Cancer 6(5), 391–401 (2005)

    Article  Google Scholar 

  16. Jaeger, M., Held, G., et al.: Computed ultrasound tomography in echo mode for imaging speed of sound using pulse-echo sonography: proof of principle. Ultrasound Med. Biol. 41(1), 235–250 (2015)

    Article  Google Scholar 

  17. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, USA (1989)

    MATH  Google Scholar 

  18. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    MATH  Google Scholar 

  19. Klimonda, Z., Postema, M., et al.: Tissue attenuation estimation by mean frequency downshift and bandwidth limitation. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(8), 1107–1115 (2016)

    Article  Google Scholar 

  20. Marmarelis, V.Z., Jeong, J., et al.: High-resolution 3-D imaging and tissue differentiation with transmission tomography. Acoust. Image 28, 195–206 (2007)

    Google Scholar 

  21. Opieliński, K.J., Pruchnicki, P., et al.: Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis. Comput. Med. Imaging Graph. 46, 83–94 (2015)

    Article  Google Scholar 

  22. Opieliński, K.J., Pruchnicki, P., et al.: Multimodal ultrasound computer-assisted tomography: an approach to the recognition of breast lesion. Comput. Med. Imaging Graph. 65, 102–114 (2018)

    Article  Google Scholar 

  23. Ranger, B., Littrup, P.J., et al.: Breast ultrasound tomography versus MRI for clinical display of anatomy and tumor rendering: preliminary results. Am. J. Roentgenol. 198, 233–239 (2012)

    Article  Google Scholar 

  24. Ricci, P., Maggini, E., et al.: Clinical application of breast elastography: state of the art. Eur. J. Radiol. 83(3), 429–437 (2014)

    Article  Google Scholar 

  25. Weiwad, W., Heinig, A., et al.: Direct measurement of sound velocity in various specimens of breast tissue. Invest. Radiol. 35(12), 721–726 (2000)

    Article  Google Scholar 

  26. Wiskin, J., Borup, D., et al.: Threedimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design and clinical results. POMA 19, 075001 (2013)

    Google Scholar 

  27. Ying, X., Lin, Y., et al.: A comparison of mammography and ultrasound in women with breast disease: a receiver operating characteristic analysis. Breast J. 18(2), 130–138 (2012)

    Article  Google Scholar 

  28. Zografos, G., Koulocheri, D., et al.: Novel technology of multimodal ultrasound tomography detects breast lesions. Eur. Radiol. 23(3), 673–683 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof J. Opieliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Opieliński, K.J., Pruchnicki, P., Wiktorowicz, A., Jóźwik, M. (2019). Algorithm for the Fusion of Ultrasound Tomography Breast Images Allowing Automatic Discrimination Between Benign and Malignant Tumors in Screening Tests. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_11

Download citation

Publish with us

Policies and ethics