Skip to main content

An Application of a Haptic Device in a Computer Aided Surgery

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Abstract

The purpose of this work was to asses the application of haptic device for preoperative virtual planning and intraoperative aiding oncological treatment in maxillofacial area, as well as to preliminarily evaluate an accuracy of intraoperative model registration using Geomagic Touch device. The skull anatomical phantom with mounted titanium screws, previously scanned using CBCT, was used for validation. Preoperative planning, including indication of 6 fiducial registration points and 5 target registration points, was performed for 4 different data sets and repeated 10 times by single user. An average fiducial registration error was \(2.46\pm 0.25\) mm, while an average target registration error was \(2.88\pm 0.44\) mm. Although, obtained accuracy is lower than in the case of optical and electromagnetic navigation system, it still can improve surgery procedure in less demanding applications being a low cost alternative. Geomagic Touch haptic device can be used for preoperative virtual planning of maxillofacial surgery, as well as for intraoperative navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3Dsystem. https://www.3dsystems.com/haptics-devices/touch. Accessed 31 Dec 2017

  2. The da Vinci Surgical System by Intuitive Surgical. https://www.intuitivesurgical.com/company/media/images/singlesite/SingleSite_PC_SC_Surgeon_head_in_console.jpg. Accessed 31 Dec 2017

  3. LapVR haptic laparoscopic surgical simulator by CAE Healthcare. https://www.intechopen.com/source/html/39043/media/image2.jpeg. Accessed 31 Dec 2017

  4. Badash, I., Burtt, K., Solorzano, C.A., Carey, J.N.: Innovations in surgery simulation: a review of past, current and future techniques. Ann. Transl. Med. 4(23), 453 (2016)

    Article  Google Scholar 

  5. Bernstein, A., Bader, B., Bengler, K., Künzner, H.: Visual-Haptic Interfaces in Car Design at BMW, pp. 445–451. Birkhäuser Basel, Basel (2008). https://doi.org/10.1007/978-3-7643-7612-3_36

  6. Ciszkiewicz, A., Lorkowski, J., Milewski, G.: A novel planning solution for semi-autonomous aspiration of baker’s cysts. Int. J. Med. Robot. Comput. Assist. Surg. e1882–n/a. https://doi.org/10.1002/rcs.1882. E1882 RCS-16-0207.R3

  7. Ciszkiewicz, A., Milewski, G.: Path planning for minimally-invasive knee surgery using a hybrid optimization procedure. Comput. Methods Biomech. Biomed. Eng. 21(1), 47–54 (2018). https://doi.org/10.1080/10255842.2017.1423289. PMID: 29318898

    Article  Google Scholar 

  8. Farooqi, K.M., Mahmood, F.: Innovations in preoperative planning: Insights into another dimension using 3d printing for cardiac disease. J. Cardiothorac. Vasc. Anesth. (2017, in Press). https://doi.org/10.1053/j.jvca.2017.11.037

  9. Fitzpatrick, J.M.: Fiducial registration error and target registration error are uncorrelated. In: Proceedings Volume 7261, Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling, vol. 726102, pp. 7261:1–7261:12 (2009). https://doi.org/10.1117/12.813601

  10. Joskowicz, L.: Computer-aided surgery meets predictive, preventive, and personalized medicine. EPMA J. 8(1), 1–4 (2017). https://doi.org/10.1007/s13167-017-0084-8

    Article  Google Scholar 

  11. Lubbers, H.T., Jacobsen, C., Matthews, F., Gratz, K.W., Kruse, A., Obwegeser, J.A.: Surgical navigation in craniomaxillofacial surgery: expensive toy or useful tool? A classification of different indications. J. Oral Maxillofac. Surg. 69(1), 300–308 (2011). https://doi.org/10.1016/j.joms.2010.07.016

    Article  Google Scholar 

  12. Magnenat-Thalmann, N., Bonanni, U.: Haptic Sensing of Virtual Textiles, pp. 513–523. Birkhäuser Basel, Basel (2008). https://doi.org/10.1007/978-3-7643-7612-3_43

  13. Majak, M., Żuk, M., Świątek-Najwer, E., Popek, M., Pietruski, P.: Biopsy procedure applied in Mentoreye Molecular Surgical Navigation System. In: Proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, VipIMAGE 2017, Porto, Portugal, 18–20 October 2017, pp. 338–344. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-68195-5_37

    Google Scholar 

  14. Moustris, G.P., Hiridis, S.C., Deliparaschos, K.M., Konstantinidis, K.M.: Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int. J. Med. Robot. Comput. Assist. Surg. 7(4), 375–392 (2011). https://doi.org/10.1002/rcs.408

    Article  Google Scholar 

  15. Naujokat, H., Rohnen, M., Lichtenstein, J., Birkenfeld, F., Gerle, M., Florke, C., Wiltfang, J.: Computer-assisted orthognathic surgery: evaluation of mandible registration accuracy and report of the first clinical cases of navigated sagittal split ramus osteotomy. Int. J. Oral Maxillofac. Surg. 46(10), 1291–1297 (2017). https://doi.org/10.1016/j.ijom.2017.05.003

    Article  Google Scholar 

  16. Pietruski, P., Majak, M., Świątek-Najwer, E., Popek, M., Jaworowski, J., Żuk, M., Nowakowski, F.: Image-guided bone resection as a prospective alternative to cutting templates-a preliminary study. J. Cranomaxillofac. Surg. 43(7), 1021–1027 (2015). https://doi.org/10.1016/j.jcms.2015.06.012

    Article  Google Scholar 

  17. Pietruski, P., Majak, M., Świątek-Najwer, E., Popek, M., Szram, D., Żuk, M., Jaworowski, J.: Accuracy of experimental mandibular osteotomy using the image-guided sagittal saw. Int. J. Oral Maxillofac. Surg. 45(6), 793–800 (2016). https://doi.org/10.1016/j.ijom.2015.12.018

    Article  Google Scholar 

  18. Robles-De-La-Torre, G.: Virtual reality: touch/haptics. In: Encyclopedia of Perception, vol. 2. Sage Publications (2009)

    Google Scholar 

  19. Rosenthal, E.L., Warram, J.M., Bland, K.I., Zinn, K.R.: The status of contemporary image-guided modalities in oncologic surgery. Ann. Surg. 261(1), 46 (2015). https://doi.org/10.1053/j.jvca.2017.11.037

    Article  Google Scholar 

  20. Schneider, O., MacLean, K., Swindells, C., Booth, K.: Haptic experience design: what hapticians do and where they need help. Int. J. Hum. Comput. Stud. 107(Supplement C), 5–21 (2017). https://doi.org/10.1016/j.ijhcs.2017.04.004. Multisensory Human-Computer Interaction

    Article  Google Scholar 

  21. Seeberger, R., Kane, G., Hoffmann, J., Eggers, G.: Accuracy assessment for navigated maxillo-facial surgery using an electromagnetic tracking device. J. Craniomaxillofac. Surg. 40(2), 156–161 (2012). https://doi.org/10.1016/j.jcms.2011.03.003

    Article  Google Scholar 

  22. Sreelakshmi, M., Subash, T.: Haptic technology: a comprehensive review on its applications and future prospects. In: Materials Today: Proceedings of the International Conference on Computing, Communication, Nanophotonics, Nanoscience, Nanomaterials and Nanotechnology, vol. 4, no. 2, Part B, pp. 4182–4187 (2017). https://doi.org/10.1016/j.matpr.2017.02.120

    Article  Google Scholar 

  23. Strong, E., Rafii, A., Holhweg-Majert, B., Fuller, S., Metzger, M.: Comparison of 3 optical navigation systems for computer-aided maxillofacial surgery. Arch. Otolaryngol. Head Neck Surg. 134(10), 1080–1084 (2008). https://doi.org/10.1001/archotol.134.10.1080

    Article  Google Scholar 

  24. Świątek-Najwer, E., Majak, M., Żuk, M., Popek, M., Kulas, Z., Jaworowski, J., Pietruski, P.: The new computer and fluorescence-guided system for planning and aiding oncological treatment. In: CARS 2017–Computer Assisted Radiology and Surgery–Proceedings of the 31th International Congress and Exhibition, vol. 2, pp. S1–S286 (2017)

    Google Scholar 

  25. Świątek-Najwer, E., Żuk, M., Majak, M., Popek, M.: The rigid registration of CT and scanner dataset for computer aided surgery. In: Proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, VipIMAGE 2017, Porto, Portugal, 18–20 October 2017, pp. 345–353. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-68195-5_38

    Google Scholar 

Download references

Acknowledgement

The work is supported by National Centre of Research and Development in Poland, in frames of the project: ‘Development of Polish complementary system of molecular surgical navigation for tumor treatment’, STRATEGMED1/233624/4/NCBR/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Żuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Żuk, M., Mazur, J., Żmudzińska, M., Majak, M., Popek, M., Świątek-Najwer, E. (2019). An Application of a Haptic Device in a Computer Aided Surgery. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_17

Download citation

Publish with us

Policies and ethics