Skip to main content

On the Influence of Image Features Wordlength Reduction on Texture Classification

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Abstract

Texture is present in a large number of medical images. Its structure codes selected properties of visualized organ and tissues so texture can be rich source of information regarding their condition. Quantitative texture analysis plays significant role in imaging diagnosis support systems, enabling segmentation of analyzed organs, detection of lesions, and assessment of the degree of their pathological change. Unfortunately, medical images are often corrupted by noise which affect texture based image features. One of the steps of texture feature extraction is reduction of gray levels number which is performed after a normalization of pixel intensities inside a region of interest. This reduces the noise effect on texture feature values. We demonstrated, based on analysis of natural and MR images, that such reduction improves classification accuracy while reducing the computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aja-Fernández, S., Tristán-Vega, A., Alberola-López, C.: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. Magn. Reson. Imaging 27(10), 1397–1409 (2009). https://doi.org/10.1016/J.MRI.2009.05.025. http://www.sciencedirect.com/science/article/pii/S0730725X09001404?via%3Dihub

    Article  Google Scholar 

  2. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G.: Statistical Analysis of Noise in MRI: Modeling, Filtering and Estimation, 1st edn. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-39934-8

    Book  MATH  Google Scholar 

  3. Boas, F.E., Fleischmann, D.: Imaging in medicine. Future Med. 4. http://www.openaccessjournals.com/articles/ct-artifacts-causes-and-reduction-techniques.html

  4. Brodatz, P.: Textures: a photographic album for artists and designers. Dover Publications, New York (1966)

    Google Scholar 

  5. Brynolfsson, P., Nilsson, D., Torheim, T., Asklund, T., Karlsson, C.T., Trygg, J., Nyholm, T., Garpebring, A.: Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-04151-4

    Article  Google Scholar 

  6. Chervyakov, N., Lyakhov, P., Orazaev, A., Valueva, M.: Efficiency analysis of the image impulse noise cleaning using median filters with weighted central element. In: 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), pp. 141–146. IEEE (2017). https://doi.org/10.1109/SIBIRCON.2017.8109856. http://ieeexplore.ieee.org/document/8109856/

  7. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002). https://doi.org/10.5589/m02-004

    Article  Google Scholar 

  8. Gómez, W., Pereira, W.C., Infantosi, A.F.: Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Trans. Med. Imaging 31(10), 1889–1899 (2012). https://doi.org/10.1109/TMI.2012.2206398

    Article  Google Scholar 

  9. Gupta, S., Chauhan, R.C., Sexana, S.C.: Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Med. Biol. Eng. Comput. 42, 189–192 (2004). https://doi.org/10.1007/BF02344630

    Article  Google Scholar 

  10. Kociolek, M., Materka, A., Strzelecki, M., Szczypinski, P.: Discrete wavelet transform - derived features for digital image texture analysis. In: International Conference on Signals and Electronic Systems, September, Lodz, pp. 163–168 (2001)

    Google Scholar 

  11. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Proces. 12(12), 1579–1590 (2003). https://doi.org/10.1109/TIP.2003.819229. http://ieeexplore.ieee.org/document/1257394/

    Article  MATH  Google Scholar 

  12. Materka, A., Strzelecki, M.: On the importance of MRI nonuniformity correction for texture analysis. In: 2013 Conference on Processing Algorithms Architectures Arrangements and Application (ISPA), pp. 118–123. IEEE (2013)

    Google Scholar 

  13. Michailovich, O., Tannenbaum, A.: Despeckling of medical ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 64–78 (2006). https://doi.org/10.1109/TUFFC.2006.1588392. http://ieeexplore.ieee.org/document/1588392/

    Article  Google Scholar 

  14. Ouahabi, A.: A review of wavelet denoising in medical imaging. In: 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), pp. 19–26. IEEE (2013). https://doi.org/10.1109/WoSSPA.2013.6602330. http://ieeexplore.ieee.org/document/6602330/

  15. Pieciak, T., Aja-Fernandez, S., Vegas-Sanchez-Ferrero, G.: Non-stationary rician noise estimation in parallel MRI using a single image: a variance-stabilizing approach. IEEE Trans. Patt. Anal. Mach. Intell. 39(10), 2015–2029 (2017). https://doi.org/10.1109/TPAMI.2016.2625789. http://ieeexplore.ieee.org/document/7736984/

    Article  Google Scholar 

  16. Priya, D.K., Sam, B.B., Lavanya, S., Sajin, A.P.: A survey on medical image denoising using optimisation technique and classification. In: 2017 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1–6. IEEE (2017). https://doi.org/10.1109/ICICES.2017.8070729. http://ieeexplore.ieee.org/document/8070729/

  17. Somkuwar, A., Bhargava, S.: Noise reduction techniques in medical imaging data-a review. In: 2nd International Conference on Mechanical, Electronics and Mechatronics Engineering (ICMEME 2013), vol. 1, 17–18 June 2013, London, UK, pp. 115–119 (2013)

    Google Scholar 

  18. Strzelecki, M., de Certaines, J., Ko, S.: Segmentation of 3D MR liver images using synchronised oscillators network. In: 2007 International Symposium on Information Technology Convergence (ISITC 2007), pp. 259–263. IEEE (2007). https://doi.org/10.1109/ISITC.2007.13. http://ieeexplore.ieee.org/document/4410646/

  19. Styner, M., Leemput, K.V.: Retrospective evaluation and correction of intensity inhomogeneity. In: Landini, L., Positano, V., Santarelli, M. (eds.) Advanced Image Processing in Magnetic Resonance Imaging, pp. 145–186. CRC Press, Boca Raton (2005)

    Chapter  Google Scholar 

  20. Szczypinski, P., Kociolek, M., Materka, A., Strzelecki, M.: Computer program for image texture analysis in Ph.D. students laboratory. In: Proceedings International Conference Signals and Electronic Systems, pp. 255–261 (2001)

    Google Scholar 

  21. Szczypinski, P.M., Strzelecki, M., Materka, A., Klepaczko, A.: MaZda-a software package for image texture analysis. Comput. Methods Programs Biomed. 94(1), 66–76 (2009). https://doi.org/10.1016/j.cmpb.2008.08.005

    Article  Google Scholar 

  22. Yilmaz, E., Kayikcioglu, T., Kayipmaz, S.: Noise removal of CBCT images using an adaptive anisotropic diffusion filter. In: 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pp. 650–653 (2017). https://doi.org/10.1109/TSP.2017.8076067. http://ieeexplore.ieee.org/document/8076067/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Strzelecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strzelecki, M., Kociołek, M., Materka, A. (2019). On the Influence of Image Features Wordlength Reduction on Texture Classification. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_2

Download citation

Publish with us

Policies and ethics