Skip to main content

Arterial Flows in Bronchopulmonary Dysplasia Prediction

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Included in the following conference series:

  • 454 Accesses

Abstract

The paper presents Bronchopulmonary Dysplasia, BPD, prediction for extremely premature infants after their first week of life using LR (Logit Regression). Presented models give accuracy up to 84.6% using only three independent variables and 81.7% with two of them. That novelty was possible to achieve thanks to unique use of arterial flows measurements, which are not a common clinical practice. That original data was collected thanks to the Neonatal Intensive Care Unit of The Department of Pediatrics at Jagiellonian University Medical College. The main pulmonary artery (MPA) and patent ductus arteriosus (PDA) flows were considered as predictors. Beyond classic statistic significance analysis and LR forecast paper presents some other results and discussion, which give an outlook on possible repeatability of results and its quality on some other’s patients data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambalavanan, N., Van Meurs, K.P., Perritt, R., Carlo, W.A., Ehrenkranz, R.A., Stevenson, D.K., Lemons, J.A., Poole, W.K., Higgins, R.D.: Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure. J. Perinatol. 28(6), 420–426 (2008). https://doi.org/10.1038/jp.2008.18

    Article  Google Scholar 

  2. Bhering, C.A., Mochdece, C.C., Moreira, M.E., Rocco, J.R., Sant’Anna, G.M.: Bronchopulmonary dysplasia prediction modelfor 7-day-old infants. Jornal de pediatria 83(2), 163–170 (2007). https://doi.org/10.1590/S0021-75572007000200011

    Article  Google Scholar 

  3. Bhutani, V.K., Abbasi, S.: Relative likelihood of bronchopulmonary dysplasia based on pulmonary mechanics measured in preterm neonates during the first week of life. J. Pediatr. 120(4), 605–613 (1992). https://doi.org/10.1016/S0022-3476(05)82491-6

    Article  Google Scholar 

  4. Corcoran, J., Patterson, C., Thomas, P., Halliday, H.: Reduction in the risk of bronchopulmonary dysplasia from 1980–1990: results of a multivariate logistic regression analysis. Eur. J. Pediatr. 152(8), 677–681 (1993). https://doi.org/10.1007/BF01955247

    Article  Google Scholar 

  5. Cunha, G.S., Mezzacappa-Filho, F., Ribeiro, J.D.: Risk factors for bronchopulmonary dysplasia in very low birth weight newborns treated with mechanical ventilation in the first week of life. J. Trop. Pediatr. 51(6), 334–340 (2005). https://doi.org/10.1093/tropej/fmi051

    Article  Google Scholar 

  6. Farstad, T., Bratlid, D., Medbø, S., Markestad, T.: Bronchopulmonary dysplasia-prevalence, severity and predictive factors in a national cohort of extremely premature infants. Acta Paediatr. 100(1), 53–58 (2011). https://doi.org/10.1111/j.1651-2227.2010.01959.x

    Article  Google Scholar 

  7. Gilbert, R., Keighley, J.: The arterial-alveolar oxygen tension ratio. an index of gas exchange applicable to varying inspired oxygen concentrations. Am. Rev. Respir. Dis. 109(1), 142 (1974)

    Article  Google Scholar 

  8. Groothuis, J.R., Makari, D.: Definition and outpatient management of the very low-birth-weight infant with bronchopulmonary dysplasia. Adv. Therapy 29(4), 297–311 (2012). https://doi.org/10.1007/s12325-012-0015-y

    Article  Google Scholar 

  9. Jobe, A.H.: The new bronchopulmonary dysplasia. Curr. Opin. Pediatr. 23(2), 167 (2011). https://doi.org/10.1097/MOP.0b013e3283423e6b

    Article  Google Scholar 

  10. Kim, Y.D., Kim, E.A.R., Kim, K.S., Pi, S.Y., Kang, W.: Scoring method for early prediction of neonatal chronic lung disease using modified respiratory parameters. J. Korean Med. Sci. 20(3), 397–401 (2005). https://doi.org/10.3346/jkms.2005.20.3.397

    Article  Google Scholar 

  11. Kim, Y.D., Kim, K.S., Kim, E.A.R., Lee, J.J., Park, S.J., Pi, S.Y.: Perinatal risk factors for the development of bronchopulmonary dysplasia in premature infants less than 32 weeks’ gestation. J. Korean Soc. Neonatol. 8(1), 78–93 (2001)

    Google Scholar 

  12. Laughon, M.M., Langer, J.C., Bose, C.L., Smith, P.B., Ambalavanan, N., Kennedy, K.A., Stoll, B.J., Buchter, S., Laptook, A.R., Ehrenkranz, R.A., et al.: Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am. J. Respir. Crit. Care Med. 183(12), 1715–1722 (2011). https://doi.org/10.1164/rccm.201101-0055OC

    Article  Google Scholar 

  13. Marshall, D.D., Kotelchuck, M., Young, T.E., Bose, C.L., Kruyer, L., O’Shea, T.M.: Risk factors for chronic lung disease in the surfactant era: a north carolina population-based study of very low birth weight infants. Pediatrics 104(6), 1345–1350 (1999). https://doi.org/10.1542/peds.104.6.1345

    Article  Google Scholar 

  14. Ochab, M., Wajs, W.: Bronchopulmonary dysplasia prediction using support vector machine and LIBSVM. In: Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 2, pp. 201–208. IEEE (2014). https://doi.org/10.15439/2014F111

  15. Ochab,M.,Wajs,W.: Bronchopulmonary dysplasia prediction using support vector machine and logit regression. Inf. Technol. Biomed. 4, 365–374 (2014). https://doi.org/10.1007/978-3-319-06596-0_34

  16. Ochab, M., Wajs, W.: Expert system supporting an early prediction of the bronchopulmonary dysplasia. Comput. Biol. Med. 69, 236–244 (2016). https://doi.org/10.1016/j.compbiomed.2015.08.016

    Article  Google Scholar 

  17. Oh, W., Poindexter, B., Perritt, R., Lemons, J., Bauer, C., Ehrenkranz, R., Stoll, B., Poole, K., Wright, L.: Neonatal research network. association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J. Pediatr. 147(6), 786–790 (2005). https://doi.org/10.1016/j.jpeds.2005.06.039

    Article  Google Scholar 

  18. Rojas, M.A., Gonzalez, A., Bancalari, E., Claure, N., Poole, C., Silva-Neto, G.: Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J. Pediatr. 126(4), 605–610 (1995). https://doi.org/10.1016/S0022-3476(95)70362-4

    Article  Google Scholar 

  19. Sinkin, R.A., Cox, C., Phelps, D.L.: Predicting risk for bronchopulmonary dysplasia: selection criteria for clinical trials. Pediatrics 86(5), 728–736 (1990)

    Google Scholar 

  20. Sosenko, I., Bancalari, E.: New developments in the pathogenesis and prevention of bronchopulmonary dysplasia. The Newborn Lung: Neonatology Questions and Controversies: Expert Consult-Online and Print, pp. 217–233 (2012)

    Chapter  Google Scholar 

  21. Stoch, P.: Zastosowanie narzędzi statystycznych i matematycznych metod sztucznej inteligencji do predykcji wystąpienia dysplazji oskrzelowo-płucnej u noworodków. Praca doktorska , Akademia Górniczo-Hutnicza, Kraków, pp. 60–72 (2007). (in Polish)

    Google Scholar 

  22. Stoll, B.J., Hansen, N.I., Bell, E.F., Shankaran, S., Laptook, A.R., Walsh, M.C., Hale, E.C., Newman, N.S., Schibler, K., Carlo, W.A., et al.: Neonatal outcomes of extremely preterm infants from the nichd neonatal research network. Pediatrics 126(3), 443–456 (2010). https://doi.org/10.1542/peds.2009-2959

    Article  Google Scholar 

  23. Subhedar, N., Hamdan, A., Ryan, S., Shaw, N.: Pulmonary artery pressure: early predictor of chronic lung disease in preterm infants. Arch. Dis. Childhood-Fetal Neonatal Ed. 78(1), F20–F24 (1998). https://doi.org/10.1136/fn.78.1.F20

    Article  Google Scholar 

  24. Tapia, J.L., Agost, D., Alegria, A., Standen, J., Escobar, M., Grandi, C., Musante, G., Zegarra, J., Estay, A., Ramírez, R.: Bronchopulmonary dysplasia: incidence, risk factors and resource utilization in a population of south-american very low birth weight infants. Jornal de pediatria 82(1), 15–20 (2006). https://doi.org/10.1590/S0021-75572006000100005

    Article  Google Scholar 

  25. Walsh, M.C., Szefler, S., Davis, J., Allen, M., Van Marter, L., Abman, S., Blackmon, L., Jobe, A.: Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 117(Supplement 1), S52–S56 (2006). https://doi.org/10.1542/peds.2005-0620I

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesław Wajs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wajs, W., Kruczek, P., Szymański, P., Wais, P., Ochab, M. (2019). Arterial Flows in Bronchopulmonary Dysplasia Prediction. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_24

Download citation

Publish with us

Policies and ethics