Skip to main content

EEG-Based Mental Task Classification with Convolutional Neural Networks – Parallel vs 2D Data Representation

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Included in the following conference series:

  • 460 Accesses

Abstract

In this paper a convolutional neural network, CNN, is trained to perform mental task recognition on the basis of the EEG signal. We address the problem of EEG data representation and processing, comparing two different approaches to the construction of the convolutional layers of the CNN. We demonstrate that splitting the input EEG data into individual channels and frequency bands is beneficial in terms of the generalization error, although the training process is faster and more stable if complete, unsplit two-dimensional spectrograms of the EEG signal are processed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonin, L., Carlson, T., Leeb, R., Millan, J.d.R.: Brain-controlled telepresence robot by motor-disabled people. In: IEEE EMBS 2011, pp. 4227–4230 (2011)

    Google Scholar 

  2. Gadhoumi, K., Lina, J.-M., Mormann, F., Gotman, J.: Seizure prediction for therapeutic devices: a review. J. Neurosci. Methods 260, 270–282 (2016)

    Article  Google Scholar 

  3. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, O., Brasil, F.L., Liberati, G., Curado, M.R., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L.G., Birbaumer, N.: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013)

    Article  Google Scholar 

  4. Jain, V.P., Mytri, V.D., Shete, V.V., Shiragapur, B K.: Sleep stages classification using wavelet transform & neural network. In: BHI 2012 IEEE-EMBS, pp. 71–74 (2012)

    Google Scholar 

  5. Liu, M., Ji, H., Zhao, C.: Event related potentials extraction from EEG using artificial neural network. In: Congress on Image and Signal Processing, pp. 213–215 (2008)

    Google Scholar 

  6. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: IJCAI 2011, pp. 1237–1242 (2011)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  8. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc., Red Hook (2012)

    Google Scholar 

  10. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

    Article  Google Scholar 

  12. Nguyen, T.V., Lu, C., Sepulveda, J., Yan, S.: Adaptive nonparametric image parsing. CoRR, abs/1505.01560 (2015)

    Article  Google Scholar 

  13. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. CoRR, abs/1311.2901 (2013)

    Google Scholar 

  14. Stasiak, B., Tarasiuk, P., Michalska, I., Tomczyk, A., Szczepaniak, S.P.: Localization of Demyelinating Plaques in MRI using Convolutional Neural Networks. In: BIOSTEC 2017, pp. 55–64 (2017)

    Google Scholar 

  15. Tarasiuk, P., Pryczek, M.: Geometric transformations embedded into convolutional neural networks. J. Appl. Comput. Sci. 24(3), 33–48 (2016)

    Google Scholar 

  16. Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.-R., Dahl, G., Ramabhadran, B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)

    Article  Google Scholar 

  17. Sercu, T., Puhrsch, C., Kingsbury, B., LeCun, Y.: Very deep multilingual convolutional neural networks for LVCSR. In: ICASSP 2016, pp. 4955–4959 (2016)

    Google Scholar 

  18. Mońko, J., Stasiak, B.: Note onset detection with a convolutional neural network in recordings of bowed string instruments. In: Dziech, A., Czyżewski, A. (eds.) Communications in Computer and Information Science, vol. 785, pp. 173–185 (2017)

    Google Scholar 

  19. Troxel, D.: Music transcription with a convolutional neural network. In: ISMIR 2016

    Google Scholar 

  20. Stasiak, B., Mońko, J.: Analysis of time-frequency representations for musical onset detection with convolutional neural network. Ann. Comput. Sci. Inf. Syst. 8, 147–152 (2016)

    Article  Google Scholar 

  21. Schlüter, J., Böck, S.: Improved musical onset detection with convolutional neural networks. In: ICASSP 2014, pp. 6979–6983 (2014)

    Google Scholar 

  22. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017)

    Article  Google Scholar 

  23. Page, A., Shea, C., Mohsenin, T.: Wearable seizure detection using convolutional neural networks with transfer learning. In: ISCAS 2016, pp. 1086–1089 (2016)

    Google Scholar 

  24. Liang, J., Lu, R., Zhang, C., Wang, F.: Predicting seizures from electroencephalography recordings: a knowledge transfer strategy. In: ICHI 2016, pp. 184–191 (2016)

    Google Scholar 

  25. Stober, S.: Learning discriminative features from electroencephalography recordings by encoding similarity constraints. In: Bernstein Conference (2016)

    Google Scholar 

  26. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)

    Article  Google Scholar 

  27. Hajinoroozi, M., Mao, Z., Jung, T.-P., Lin, C.-T., Huang, Y.: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Sig. Process. Image Commun. 47, 549–555 (2016)

    Article  Google Scholar 

  28. Sakhavi, S., Guan, C., Yan, S.: Parallel convolutional-linear neural network for motor imagery classification. In: EUSIPCO 2015, pp. 2736–2740 (2015)

    Google Scholar 

  29. Szajerman, D., Smagur, A., Opałka, S., Wojciechowski, A.: Effective BCI mental tasks classification with adaptively solved convolutional neural networks. In: 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, pp. 1–2 (2017)

    Google Scholar 

  30. Tang, Z., Li, C., Sun, S.: Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik Int. J. Light Electron Opt. 130, 11–18 (2017)

    Article  Google Scholar 

  31. Millán, J.d.R.: On the need for on-line learning in brain-computer interfaces. In: Proceedings of IEEE International Joint Conference on Neural Networks, pp. 2877–2882 (2004)

    Google Scholar 

  32. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding. In: ACM MM 2014, pp. 675–678 (2014)

    Google Scholar 

  33. Lin, C.-J., Hsieh, M.-H.: Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4–6), 1121–1130 (2009)

    Article  Google Scholar 

  34. Agarwal, S.K., Shah, S., Kumar, R.: Classification of mental tasks from EEG data using backtracking search optimization based neural classifier. Neurocomputing 166, 397–403 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Arkadiusz Tomczyk (Institute of Information Technology, Łódź University of Technology) for kindly providing the computational resources to run the experimental evaluation of our CNN models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Stasiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stasiak, B., Opałka, S., Szajerman, D., Wojciechowski, A. (2019). EEG-Based Mental Task Classification with Convolutional Neural Networks – Parallel vs 2D Data Representation. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_48

Download citation

Publish with us

Policies and ethics