Skip to main content

Efficient Genetic Algorithm for Breast Cancer Diagnosis

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Included in the following conference series:

Abstract

In almost all datasets some number of abnormal observations is present. Such outliers may affect the process of data analysis. However several methods of outlier detection already exist, there is still a need to look for a new, more effective ones. In this paper we propose a set of objectives that allows to efficiently identify outliers with the use of multiobjective genetic algorithm. Conducted research shown that such a method can be successfully used with the most common genetic algorithms designed for multiobjective optimization. The results of tests, which were conducted on the set of medical data from the repository, indicate that our method can be successfully applied to the medical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Outlier detection in categorical, text and mixed attribute data. In: Outlier Analysis, pp. 199–223. Springer (2013)

    Google Scholar 

  2. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. ACM SIGMOD Rec. 30, 37–46 (2001)

    Article  Google Scholar 

  3. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 29–38. ACM (2003)

    Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  5. Chomatek, L., Duraj, A.: Multiobjective genetic algorithm for outliers detection. In: 2017 IEEE International Conference on Innovations in Intelligent SysTems and Applications (INISTA), pp. 379–384. IEEE (2017)

    Google Scholar 

  6. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 283–290. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Duraj, A., Krawczyk, A.: Finding outliers for large medical datasets. Przeglad Elektrotechniczny 86, 188–191 (2010)

    Google Scholar 

  9. Duraj, A., Chomatek, L.: Supporting breast cancer diagnosis with multi-objective genetic algorithm for outlier detection. In: International Conference on Diagnostics of Processes and Systems, pp. 304–315. Springer (2017)

    Google Scholar 

  10. Duraj, A., Szczepaniak., P.S.: Information outliers and their detection. In: Information Studies and the Quest for Transdisciplinarity, pp. 413–437. World Scientific Publishing Company (2017)

    Chapter  Google Scholar 

  11. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  12. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  13. He, Z., Deng, S., Xu, X.: Outlier detection integrating semantic knowledge. In: International Conference on Web-Age Information Management, pp. 126–131. Springer (2002)

    Chapter  Google Scholar 

  14. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9), 1641–1650 (2003)

    Article  Google Scholar 

  15. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  16. Jiang, F., Sui, Y., Cao, C.: Outlier detection using rough set theory. In: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 79–87 (2005)

    Google Scholar 

  17. Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers. In: VLDB, vol. 99, pp. 211–222 (1999)

    Google Scholar 

  18. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. Int. J. Very Large Data Bases (VLDB) 8(3–4), 237–253 (2000)

    Article  Google Scholar 

  19. Knox, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the International Conference on Very Large Data Bases, pp. 392–403. Citeseer (1998)

    Google Scholar 

  20. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  21. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  22. Lilford, R., Mohammed, M.A., Spiegelhalter, D., Thomson, R.: Use and misuse of process and outcome data in managing performance of acute medical care: avoiding institutional stigma. Lancet 363(9415), 1147–1154 (2004)

    Article  Google Scholar 

  23. Petrovskiy, M.: A hybrid method for patterns mining and outliers detection in the web usage log. In: Advances in Web Intelligence, pp. 954–954 (2003)

    Google Scholar 

  24. Ren, D., Wang, B., Perrizo, W.: Rdf: A density-based outlier detection method using vertical data representation. In: 2004 Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 503–506. IEEE (2004)

    Google Scholar 

  25. Shaari, F., Bakar, A.A., Hamdan, A.R.: A predictive analysis on medical data based on outlier detection method using non-reduct computation. In: International Conference on Advanced Data Mining and Applications. pp. 603–610. Springer (2009)

    Chapter  Google Scholar 

  26. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: IS & T/SPIE’s Symposium on Electronic Imaging: Science and Technology, pp. 861–870. International Society for Optics and Photonics (1993)

    Google Scholar 

  27. Tang, J., Chen, Z., Fu, A.W.C., Cheung, D.: A robust outlier detection scheme for large data sets. In: 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Citeseer (2001)

    Google Scholar 

  28. Theodore, J., Ivy, K., Raymong, T.: Fast computation of 2D depth contours. ACM SIG KDD, pp. 224–228 (1998)

    Google Scholar 

  29. Wolberg, W.H., Street, W.N., Mangasarian, O.: Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates. Cancer Lett. 77(2–3), 163–171 (1994)

    Article  Google Scholar 

  30. Yamanishi, K., Takeuchi, J.i.: Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 389–394. ACM (2001)

    Google Scholar 

  31. Zitzler, E., Laumanns, M., Thiele, L., et al.: Spea2: Improving the strength pareto evolutionary algorithm (2001)

    Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the Dean of the Faculty of Technical Physics, Information Technology and Applied Mathematics, Lodz University of Technology. The dataset used in our research was taken from the UCI Machine Learning Repository [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Chomatek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chomatek, L., Duraj, A. (2019). Efficient Genetic Algorithm for Breast Cancer Diagnosis. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_6

Download citation

Publish with us

Policies and ethics