Abstract
Open ended evolution seeks computational structures whereby creation of unbounded diversity and novelty are possible. However, research has run into a problem known as the “novelty plateau” where further creation of novelty is not observed. Using standard algorithmic information theory and Chaitin’s Incompleteness Theorem, we prove no algorithm can detect unlimited novelty. Therefore observation of unbounded novelty in computer evolutionary programs is nonalgorithmic and, in this sense, unknowable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Even though i is not prefix free (i.e. it will halt once \(b^*\) is executed, leaving \(a^*_{b^*}\) unread), the program that is run on the Turing machine \(\mathcal {U}\) is still prefix free because i is appended to \(p_c\), so the full execution on \(\mathcal {U}\) is \(\mathcal {U}(p_ci)\). Since \(p_c\) is prefix free, then so is \(p_ci\), as it will only halt once the entire string is read.
- 3.
While Kolmogorov complexity is an exact metric, and has to account for both meaningful structure and random noise in the population, the Kolmogorov sufficient statistic can be used to measure just the meaningful structure in the population.
References
Mitchell, M., Forrest, S.: Genetic algorithms and artificial life. Artif. life 1(3), 267–289 (1994)
Huneman, P.: Determinism, predictability and open-ended evolution: lessons from computational emergence. Synthese 185(2), 195–214 (2012)
Komosinski, M., Rotaru-Varga, A.: From directed to open-ended evolution in a complex simulation model. Artif. Life 7, 293–299 (2000)
Sayama, H.: Seeking open-ended evolution in swarm chemistry. In: 2011 IEEE Symposium on Artificial Life (ALIFE), pp. 186–193. IEEE (2011)
Li, J., Storie, J., Clune, J.: Encouraging creative thinking in robots improves their ability to solve challenging problems. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 193–200. ACM (2014)
Soros, L., Stanley, K.O.: Identifying necessary conditions for open-ended evolution through the artificial life world of chromaria. Artif. life 14, 793–800 (2014)
Basener, W.F.: Exploring the concept of open-ended evolution. In: Biological Information: New Perspectives, pp. 87–104. World Scientific (2012)
Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artif. life 6(4), 363–376 (2000)
Ruiz-Mirazo, K., Peretó, J., Moreno, A.: A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph. 34(3), 323–346 (2004)
Ruiz-Mirazo, K., Umerez, J., Moreno, A.: Enabling conditions for open-ended evolution. Biol. Philos. 23(1), 67–85 (2008)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from Natural to Artificial Systems, vol. 1. Oxford University Press, Oxford (1999)
Ewert, W., Marks, R.J., Thompson, B.B., Yu, A.: Evolutionary inversion of swarm emergence using disjunctive combs control. IEEE Trans. Syst. Man Cybern. Syst. 43(5), 1063–1076 (2013)
Roach, J., Ewert, W., Marks, R.J., Thompson, B.B.: Unexpected emergent behaviors from elementary swarms. In: 2013 45th Southeastern Symposium on System theory (SSST), pp. 41–50. IEEE (2013)
Roach, J.H., Marks, R.J., Thompson, B.B.: Recovery from sensor failure in an evolving multiobjective swarm. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 170–174 (2015)
Taylor, T.: Exploring the concept of open-ended evolution. In: Proceedings of the 13th International Conference on Artificial life, pp. 540–541 (2012)
Jakobi, N.: Encoding scheme issues for open-ended artificial evolution. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 52–61. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_969
Channon, A.: Three evolvability requirements for open-ended evolution. In: Artificial Life VII Workshop Proceedings, Portland, OR, pp. 39–40 (2000)
Mueller, I.: Euclid’s elements and the axiomatic method. Br. J. Philos. Sci. 20(4), 289–309 (1969)
Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions. STUDFUZZ, vol. 219, pp. 499–528. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4_20
Chaitin, G.J.: Algorithmic information theory. IBM J. Res. Dev. 21(4), 350–359 (1977)
Raatikainen, P.: On interpreting Chaitin’s incompleteness theorem. J. Philos. Log. 27(6), 569–586 (1998)
Chaitin, G.J.: Information, Randomness & Incompleteness: Papers on Algorithmic Information Theory, vol. 8. World Scientific, Singapore (1990)
Grünwald, P.D., Vitányi, P.M., et al.: Algorithmic information theory. In: Handbook of the Philosophy of Information, pp. 281–320 (2008)
Seibt, P.: Algorithmic Information Theory. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33219-0
Van Lambalgen, M.: Algorithmic information theory. J. Symb. Log. 54(4), 1389–1400 (1989)
Chaitin, G.: Proving Darwin: Making Biology Mathematical. Vintage, New York (2012)
Chaitin, G.J.: Toward a mathematical definition of life. In: Information, Randomness & Incompleteness: Papers on Algorithmic Information Theory, pp. 86–104. World Scientific (1987)
Gecow, A.: The purposeful information. On the difference between natural and artificial life. Dialogue Univers. 18(11/12), 191–206 (2008)
Pattee, H.H.: Artificial life needs a real epistemology. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 21–38. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_286
Chaitin, G.J.: The Unknowable. Springer Science & Business Media, Heidelberg (1999)
Bennett, C.H., Gács, P., Li, M., Vitanyi, P., Zurek, W.H.: Information distance. arXiv preprint arXiv:1006.3520 (2010)
Calude, C.S.: Algorithmic randomness, quantum physics, and incompleteness. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 1–17. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31834-7_1
Ming, L., Vitányi, P.M.: Kolmogorov complexity and its applications. Algorithms Complex. 1, 187 (2014)
Vitányi, P.M., Li, M.: Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans. Inf. Theory 46(2), 446–464 (2000)
Wallace, C.S., Dowe, D.L.: Minimum message length and Kolmogorov complexity. Comput. J. 42(4), 270–283 (1999)
Muller, G.B., Wagner, G.P.: Novelty in evolution: restructuring the concept. Ann. Rev. Ecol. Syst. 22(1), 229–256 (1991)
Pigliucci, M.: What, if anything, is an evolutionary novelty? Philos. Sci. 75(5), 887–898 (2008)
Li, X., Croft, W.B.: An information-pattern-based approach to novelty detection. Inf. Process. Manag. 44(3), 1159–1188 (2008)
Zhao, L., Zhang, M., Ma, S.: The nature of novelty detection. Inf. Retr. 9(5), 521–541 (2006)
Kowaliw, T., Dorin, A., McCormack, J.: An empirical exploration of a definition of creative novelty for generative art. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS (LNAI), vol. 5865, pp. 1–10. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10427-5_1
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)
Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process. 99, 215–249 (2014)
Reed, R., Marks, R.J.: Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT Press, Cambridge (1999)
Thompson, B.B., Marks, R.J., Choi, J.J., El-Sharkawi, M.A., Huang, M.Y., Bunje, C.: Implicit learning in autoencoder novelty assessment. In: 2002 Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 3, pp. 2878–2883. IEEE (2002)
Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)
Mouret, J.B.: Novelty-based multiobjectivization. In: Doncieux, S., Bredèche, N., Mouret, J.B. (eds.) New Horizons in Evolutionary Robotics. SCI, vol. 341, pp. 139–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18272-3_10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Holloway, E., Marks, R. (2018). Observation of Unbounded Novelty in Evolutionary Algorithms is Unknowable. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-91253-0_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91252-3
Online ISBN: 978-3-319-91253-0
eBook Packages: Computer ScienceComputer Science (R0)