Skip to main content

Verification of Results in the Acquiring Knowledge Process Based on IBL Methodology

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Abstract

In the paper, we discuss IBL - Instance-Based Learning - as a method of acquiring knowledge, and apply it to the verification of the shape symmetry/asymmetry of the skin lesions. The test verifying whether the asymmetry of the lesion presented in PH2 dataset is conducted using IB3 algorithms. We also verify the construction of the DASMShape asymmetry measure and its results. We achieved classification ratio on DAS values from PH2 around 59% in comparison to 84% achieved on the defined DASMShape measure. It implies that the data verification using IBL algorithms is very vital in order to design reliable dermatological diagnosis supporting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man Mach. Stud. 36, 267–287 (1992)

    Article  Google Scholar 

  2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Google Scholar 

  3. Batchelor, B.G.: Pattern Recognition: Ideas in Practice. Plenum Press, New York (1978)

    MATH  Google Scholar 

  4. Biberman, Y.: A context similarity measure. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 49–63. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_50

    Chapter  Google Scholar 

  5. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006). ISSN 1613-9011

    MATH  Google Scholar 

  6. Brent, M.: Instance-based Learning: nearest neighbour with generalisation. Department of Computer Science, University of Waikato (1995)

    Google Scholar 

  7. Brodley, C.E.: Addressing the selective superiority problem: automatic algorithm/model class selection. In: Proceedings of the Tenth International Machine Learning Conference, Amherst, MA, pp. 17–24 (1993)

    Google Scholar 

  8. Broomhead, D.S., Lowe, D.: Multi-variable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MATH  Google Scholar 

  9. Cameron-Jones, R.M.: Instance selection by encoding length heuristic with random mutation hill climbing. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, pp. 99–106 (1995)

    Google Scholar 

  10. Carpenter, G.A., Grossberg, S.A.: Massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 37, 54–115 (1987)

    Article  Google Scholar 

  11. Chang, C.-L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1184 (1974)

    Article  Google Scholar 

  12. Gagliardi, F.: Instance-based classifiers applied to medical databases: diagnosis and knowledge extraction. J. Artif. Intell. Med. 52(3), 123–139 (2011)

    Article  Google Scholar 

  13. Gagliardi, F.: Instance-based classifiers to discover the gradient of typicality in data. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23954-0_47

    Chapter  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: Prototype methods and nearest-neighbors. In: Hastie, T., Tibshirani, R., Friedman, J. (eds.) The Elements of Statistical Learning. Data Mining, Inference, and Prediction. SSS, pp. 459–483. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7_13

    Chapter  MATH  Google Scholar 

  15. Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of asymmetry in dermoscopic colour images of pigmented skin lesions. In: Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2013, pp. 368–375 (2013)

    Google Scholar 

  16. Jebara, T.: Machine Learning Discriminative and Generative. Springer, New York (2004). https://doi.org/10.1007/978-1-4419-9011-2

    Book  MATH  Google Scholar 

  17. Kanwal, N., Bostanci, E.: Comparative Study of Instance Based Learning and Back Propagation for Classification Problems. GRIN Verlag, USA (2016)

    Google Scholar 

  18. Mendonca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2-a dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 5437–5440 (2013)

    Google Scholar 

  19. Milczarski, P.: Skin lesion symmetry of hue distribution. In: Proceedings of the IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1006–1013 (2017)

    Google Scholar 

  20. Milczarski, P., Stawska, Z., Maślanka, P.: Skin lesions dermatological shape asymmetry measures. In: Proceedings of the IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1056–1062 (2017)

    Google Scholar 

  21. Milczarski, P., Stawska, Z., Was, L., Wiak, S., Kot, M.: New dermatological asymmetry measure of skin lesions. Int. J. Neural Netw. Adv. Appl. 4, 32–38 (2017)

    Google Scholar 

  22. Was, L., Milczarski, P., Stawska, Z., Wyczechowski, M., Kot, M., Wiak, S., Wozniacka, A., Pietrzak, L.: Analysis of dermatoses using segmentation and color hue in reference to skin lesions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 677–689. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_61

    Chapter  Google Scholar 

  23. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 37, 257–286 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Milczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Was, L., Milczarski, P., Stawska, Z., Wiak, S., Maslanka, P., Kot, M. (2018). Verification of Results in the Acquiring Knowledge Process Based on IBL Methodology. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics